

## Tri City Lands Ltd.

Traffic Impact Assessment Proposed Spencer Pit - Town of Guelph/Eramosa

April 2014



April 4, 2014

Tri City Lands Ltd. c/o Mr. Glenn Harrington Snyders Road, P.O. Box 209 Petersburg, ON N0B 2M0

Dear Sir

#### RE: Proposed Spencer Pit Traffic Impact Assessment Wellington Road 124 / Kossuth Road Township of Guelph/Eramosa, County of Wellington Our Project No. 2821569 / 13268

We are pleased to present the enclosed Traffic Impact Assessment analysing the traffic impacts of the proposed Spencer Pit located on the south side of Wellington Road 124 in the vicinity of Kossuth Road in the Township of Guelph/Eramosa, County of Wellington. The proposed Spencer Pit license proposes an annual maximum material extraction of 650,000 tonnes.

This study concludes that the trips associated with the proposed Spencer Pit can be accommodated by the existing roadway system with the implementation of the proposed Pit Access lane configurations at the intersection of Wellington Road 124 / Kossuth Road.

We trust the enclosed is sufficient for your needs, but please do not hesitate to contact the undersigned should you require any additional assistance.

Sincerely GHD Inc.

AND PROFESSIONA OVINCE OF ON

William Maria, P.Eng. Transportation Engineer D 905 814 4397

.../hs

D 406 752 4345

J.A. (Jim) Bacchus, B.A., MITE

Service Group Manager, Transport Planning

## Executive summary

- The proposed Spencer Pit license proposes an annual maximum material extraction of 650,000 tonnes. This translates into an hourly truck traffic generation of up to 6 inbound and 9 outbound trucks during the am peak hour and 9 inbound and 6 outbound trips during the pm peak hour during peak summertime operations.
- Vehicular access for the new pit will be directly to Wellington Road 124 opposite Kossuth Road at its intersection with Wellington Road 124. The site access driveway will create a new four-legged intersection at this location.
- The primary haul route will be east and west respectively along Wellington Road 124 and Hespeler Road (Waterloo Regional Road 24), as well as west on Kossuth Road (Waterloo Regional Road 31).
   All routes satisfy the Wellington County and Waterloo Region's Official Plan requirements with respect to heavy vehicle goods movement.
- Two future horizon years have been adopted for the future conditions analysis to coincide with the projected opening year of the Pit in 2015, as well as a 2020 scenario (five years beyond the initial operating year) to provide a longer-term Pit-impact assessment in context with predicted non-Pit generated future traffic growth along the haul routes.
- An annual growth rate of 5% was (conservatively) applied to the baseline 2013 traffic flows to predict future non-pit related traffic volumes along the haul routes under both 2015 and 2020 scenarios.
- The existing peak directional volumes on Wellington Road 124 just east of the Kossuth Road intersection (am peak hour northbound and pm peak hour southbound) range between 1020 and 1135 vehicles per hour respectively. This volume of traffic exceeds typical regional arterial roadway planning capacities (generally in the range of 800 to 1,000 vehicles per hour per lane).
- Considering future background traffic growth, the estimated 2020 background (without Pit traffic) peak
  direction volumes on Wellington Road 124 just east of the Kossuth Road are expected to increase to
  approximately 1600 vehicles per hour in the peak direction, which is in excess of this road's
  theoretical capacity as a two-lane arterial road. Therefore, the widening of Wellington Road 124 (and
  Hespeler Road into Waterloo Region) to four lanes should be considered by the road authorities <u>in
  the medium term</u> to accommodate existing and future background traffic growth.
- The results of our analysis indicates that the 2015 background traffic growth, plus trips associated with the proposed Spencer Pit can be accommodated by the existing roadway system with the implementation of exclusive turn lane configurations at the intersection of Wellington Road 124 / Kossuth Road as recommended herein. The intersection is expected to operate at 'good' levels of service (LOS 'C') and within design capacity.
- By 2020, with the implementation of the recommended pit site access improvements, in conjunction with the recommended widening to four lanes of Wellington Road 124/Hespeler Road through the Kossuth Road intersection, future total traffic flows to the 2020 horizon can be accommodated at the study intersection with overall 'good' levels of service (LOS 'C').
- Spencer Pit truck traffic, even at its peak generation levels, only contributes about 1% to the future traffic flows along the haul route roadways examined herein. This indicates it is predicted growth in background traffic flows (in combination with existing traffic volumes) that compels the recommended widening of Wellington Road 124 and that the truck trips introduced by the Spencer Pit do not trigger any adjacent roadway improvements beyond those required to facilitate access into and out of the Pit.

#### **Recommended Site Access Features**

- By 2015, the following improvements are recommended at the Wellington Road 124/Kossuth Road intersection to accommodate Spencer Pit-related traffic:
  - A southbound exclusive left turn lane to serve inbound truck trips from the northeast and to separate these turns from the heavy southbound through movement flows;
  - Northbound right turn taper to provide a deceleration facility for inbound trucks to the Pit, and to separate these movements from the heavy northbound traffic flow;
  - A new site access opposite from, and aligned with, Kossuth Road;
  - Associated signalized intersection infrastructure (poles, heads, etc.) to accommodate above;
  - The recommended pit access lane configurations shall be incorporated into the site plans upon acceptance by the road authority.

#### **Recommended Adjacent Roadway Improvements**

• By 2020, based on the predicted background traffic growth (and unrelated to the Spencer Pit impacts), the widening of Wellington Road 124 and Hespeler Road to four lanes through the Kossuth Road intersection is recommended.

## Table of contents

| 1. | Intro | Introduction and study background1      |  |  |  |  |  |
|----|-------|-----------------------------------------|--|--|--|--|--|
|    | 1.1   | Statement of qualifications2            |  |  |  |  |  |
|    | 1.2   | Project team2                           |  |  |  |  |  |
| 2. | Base  | line traffic conditions5                |  |  |  |  |  |
|    | 2.1   | Haul route roadways5                    |  |  |  |  |  |
|    | 2.2   | 2013 baseline traffic volumes5          |  |  |  |  |  |
|    | 2.3   | Intersection operations                 |  |  |  |  |  |
| 3. | Futu  | re background traffic conditions8       |  |  |  |  |  |
|    | 3.1   | Roadway improvements8                   |  |  |  |  |  |
|    | 3.2   | Future traffic growth8                  |  |  |  |  |  |
|    | 3.3   | Future background operating conditions8 |  |  |  |  |  |
|    | 3.3.2 | 2020 Future background conditions10     |  |  |  |  |  |
| 4. | Site  | Generated Traffic12                     |  |  |  |  |  |
|    | 4.1   | Traffic generation12                    |  |  |  |  |  |
|    | 4.2   | Traffic distribution and assignment13   |  |  |  |  |  |
| 5. | Total | future traffic impact analysis15        |  |  |  |  |  |
|    | 5.1   | 2015 Total future operations15          |  |  |  |  |  |
|    | 5.2   | 2020 Total future operations            |  |  |  |  |  |
| 6. | Findi | ngs and recommendations21               |  |  |  |  |  |

## Table index

| Table 1  | 2013 Baseline traffic conditions                                                         | 7  |
|----------|------------------------------------------------------------------------------------------|----|
| Table 2  | 2015 Fugure background traffic conditions (without Pit traffic)                          | 9  |
| Table 3a | 2020 Fugure background traffic conditions (without Pit traffic)                          | 10 |
| Table 3b | Future background traffic conditions (with Wellington Road 124 / Hespeler Road widening) | 11 |
| Table 4  | Monthly material shipping estimates                                                      | 12 |
| Table 5  | 2015 Total future traffic conditions (with Pit traffic included)                         | 16 |
| Table 6a | 2020 Total future traffic conditions (without Wellington Road 124 widening)              | 19 |
| Table 6b | 2020 Total fugure traffic conditions (with Wellington Road 124 widening)                 | 20 |

## Figure index

| Figure 1  | Site Location                                                   | 3   |
|-----------|-----------------------------------------------------------------|-----|
| Figure 2  | Site operations plan                                            | 4   |
| Figure 3  | Baseline (2013) traffic Volumes                                 | 6   |
| Figure 4a | Fugure (2015) background traffic volumes                        | 9   |
| Figure 4b | Fugure (2020) background traffic volumes                        | .10 |
| Figure 5  | Total site traffic volumes                                      | .14 |
| Figure 6a | Total (2015) future traffic volumes                             | .15 |
| Figure 6b | Total (2020) future traffic volumes                             | .17 |
| Figure 7  | Wellington Road 124 / Kossuth Road (site access) concept design | .18 |
|           |                                                                 |     |

## Appendices

| Appendix A - Traffic Data                                                                            |
|------------------------------------------------------------------------------------------------------|
| Appendix B - Baseline (2013) Synchro Capacity Analysis                                               |
| Appendix C - Future (2015) Background Synchro Capacity Analysis                                      |
| Appendix D - Future (2020) Background Synchro Capacity Analysis                                      |
| Appendix E - Future (2015) Total Synchro Capacity Analysis and Passenger Car Equivalent (PCE) Figure |
| Appendix F - Future (2020) Total Synchro Capacity                                                    |
| Appendix G - Curriculum Vitae                                                                        |

## 1. Introduction and study background

GHD was retained by Tri City Lands Ltd.to conduct a Traffic Impact Study to assess the extent of traffic-related impacts on the abutting roadway system generated by the proposed Spencer Pit. The proposed Spencer Pit is located on the south side of Wellington Road 124 in the vicinity of Kossuth Road in the Township of Guelph/Eramosa, County of Wellington as illustrated on **Figure 1**. The proposed Operations Plan dated February 2014 for the Pit is shown on **Figure 2**.

GHD has reviewed the Wellington County and Waterloo Region's Official Plans, to confirm the abutting roadways are appropriate to be used as haul routes to transport material from the proposed pit to key market areas. These roadways include:

- Wellington Road 124 to serve the local Guelph area
- Kossuth Road (Waterloo Regional Road 31) to serve the local Kitchener market
- Hespeler Road (Waterloo Regional Road 24) to provide a route south to Highway 401 and markets further out to the east and west

The Wellington County Official Plan indicates that all county roads are expected to provide and serve high volumes of traffic including truck traffic. The Waterloo Region Official Plan also identifies all regional roads will be classified as appropriate for trucks unless prohibitions or time restrictions are imposed on particular sections. The excerpts of the Wellington County and Waterloo Region Official Plans are included in **Appendix A**.

In this regard, all three routes are appropriate to carry forward as 'haul routes' for material shipped from the proposed Spencer Pit. Therefore, we have assumed the transport of material from the Spencer Pit will occur equally along each of the abutting roadways to serve local and broader markets. It is likely that there will be periods of time that a higher proportion of truck trips will utilize one or the other haul roads, but such fluctuations in market demand for product would not dictate or necessitate substantive changes in the predicted impacts from the proposed pit, as will be discussed and presented herein.

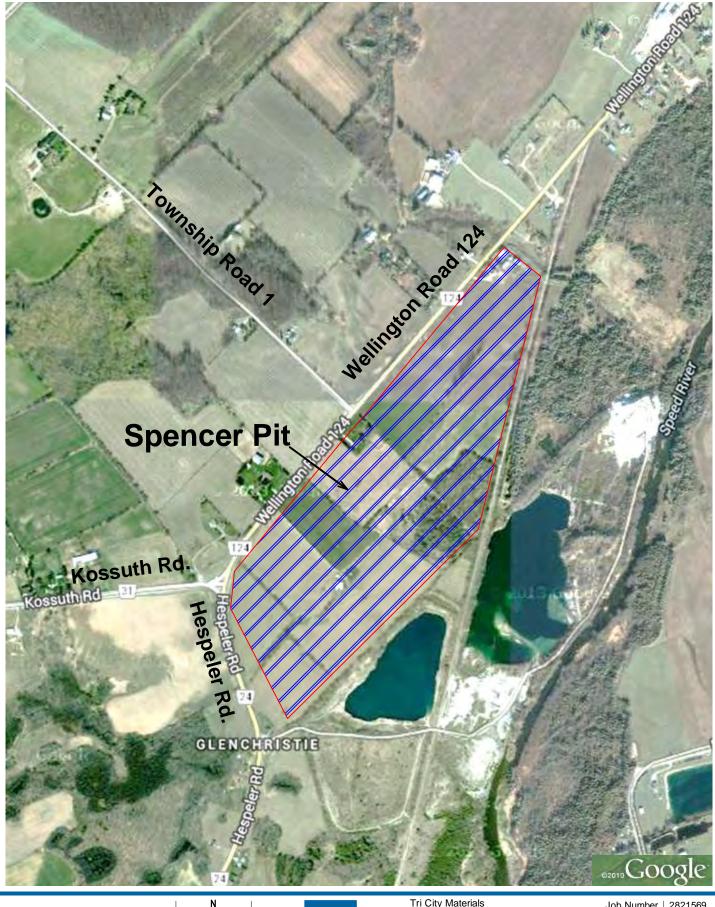
## 1.1 Statement of qualifications

Our Service Group Manager and Transportation Engineer have a reputation for delivering traffic engineering solutions that are practical and innovative. Below we describe the qualifications and experience each brings to this project.

| <b>Winana</b> i Hansportation Engineer, i lojeet manager | William Maria | Transportation Engineer, Project Manager |
|----------------------------------------------------------|---------------|------------------------------------------|
|----------------------------------------------------------|---------------|------------------------------------------|

| Qualifications               | Bachelor of Engineering (civil), 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Experience                   | Will provides services to clients that enable them to optimize their<br>transportation systems and to plan (and budget) effectively for growth. These<br>services include: transportation planning; traffic engineering and parking; site<br>traffic analysis; urban transit operations and project management. He has over<br>14 years' experience in these fields in Ontario. As Project Manager on this<br>project, Will was responsible for the successful planning, execution,<br>monitoring and control of the project |
| Professional<br>Designations | Member of the Professional Engineers of Ontario (PEO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### Jim Bacchus | Service Group Manager, Transport Planning


| Qualifications               | B.A.                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Experience                   | Jim provides services to clients in transportation planning, traffic engineering, expert testimony, and project management based on 20 years of local and international experience in his field. In addition, Jim manages GHD's Transport Planning team in Canada. Jim was technical advisor for the project and provided quality control and assurance (QA/QC). |
| Professional<br>Designations | Member, Institute of Transportation Engineers                                                                                                                                                                                                                                                                                                                    |

### 1.2 Project team

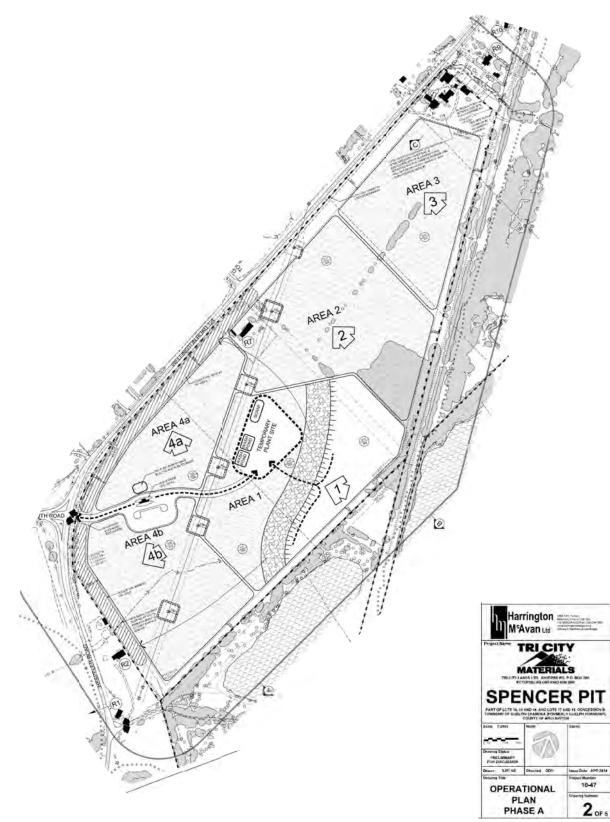
The GHD team involved in the preparation of this study are:

- Mr J.A. (Jim) Bacchus, B.A., MITE, Service Group Manager, Transport Planning
- Mr William Maria, P.Eng., Transportation Engineer
- Mr Hong Shen, M.Eng., P.Eng., Transportation Engineer
- Mr Michael Dowdall, Dipl.T., Transportation Analyst

Their CVs are in Appendix G.



NOT TO SCALE




Tri City Materials Traffic Impact Assessment Proposed Spencer Pit Site Location

Job Number | 2821569 Revision | A Date | Apr 2014 Figure 1

Plotted by: Michael Dowdall

6705 Millcreek Drive, Unit 1, Mississauga Ontario LSN 5M4 T 1 416 213 7121 F 1 416 890 8499 E info@ghdcanada.com W www.ghd.com Cad File No: X:\SernasTransTech\Projects12013\13268 SPENCER PIT\Analysis\April 2014 Update\13268 Spencer Pit Figures - Apri-42014.dwg



Source from Harrington McAvan Ltd.

NOT TO SCALE



Plotted by: Michael Dowdall

Tri City Materials Traffic Impact Assessment Proposed Spencer Pit Site Operational Plan

ĩ

Job Number | 2821569 Revision А Date Apr 2014 Figure 2

6705 Millcreek Drive, Unit 1, Mississauga Ontario L5N 5M4 T 1 416 213 7121 F 1 416 890 8499 E info@ghdcanada.com W www.ghd.com Cad File No: X:\SernasTransTech\Projects\2013\13268 SPENCER PIT\Analysis\April 2014 Update\13268 Spencer Pit Figures - Apr 4-2014.dwg

Plot Date: 4 April 2014 - 10:28 AM

# 2. Baseline traffic conditions

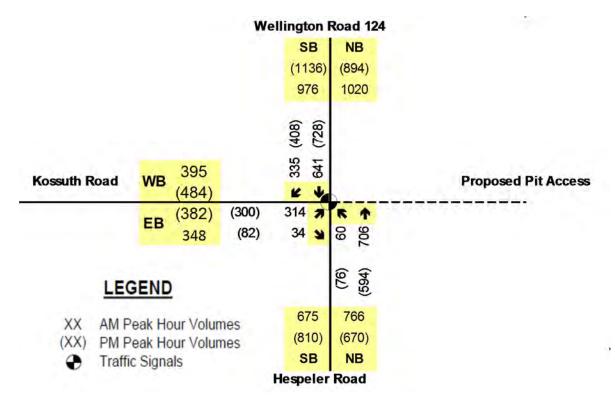
This section summarizes the proposed haul routes and surrounding road network, summarizes the data collection program, presents the existing traffic volume conditions on the proximate study area roadways and assesses the current operating conditions at the intersection examined in this study (Wellington Road 124 / Kossuth Road). These 'baseline conditions' form the foundation for future background traffic projections and the incremental site-impact analyses investigated later herein.

### 2.1 Haul route roadways

Wellington Road 124 is a rural, two-lane roadway generally oriented in a north-south direction, with a posted speed limit of 70 km/h in the study area, and under the jurisdiction of the County of Wellington.

Hespeler Road (Regional Road 24) is generally oriented in a north-south direction and has a twolane rural cross section with a posted speed limit of 80 km/h. It is under the jurisdiction of the Region of Waterloo.

Kossuth Road (Regional Road 31) also under the jurisdiction of the Region of Waterloo, is generally oriented in an east-west direction and has a two-lane rural cross section with a statutory speed limit of 80km/h.


The Wellington Road 124 / Hespeler Road intersection at Kossuth Road is currently signalized with a northbound left turning lane, eastbound and southbound channelized right turn lanes.

### 2.2 2013 baseline traffic volumes

A weekday turning movement survey was conducted by GHD in October 2013 (attached in **Appendix A**) at the intersection of Wellington Road 124 (Hespeler Road) and Kossuth Road. The am and pm peak hour volumes from this count are shown in **Figure 3**.

To consider seasonal traffic variations, we have reviewed the MTO 2010 Seasonal Variation Factors for a suburban commuter route, which is the current designation of Highway 7 in the vicinity of the site. The seasonal variation from October to the peak annual traffic condition indicated in the MTO data (May) indicates similar levels of traffic volume. Therefore, we have not applied a seasonal adjustment to the October 2013 turning movements. A copy of the MTO Seasonal Adjustment Factors for 2010 is attached in **Appendix A**.

#### Figure 3 Baseline (2013) traffic Volumes



#### 2.3 Intersection operations

The 2013 baseline traffic volumes were subjected to intersection capacity analyses to identify how the study intersections are operating. The analysis contained within this report utilizes the Highway Capacity Manual (HCM) 2000 techniques applying Synchro Version 8 Software package and following the Region of Waterloo's guidelines for intersection analyses. The existing signal timings for the intersection of Wellington Road 124/Hespeler Road and Kossuth Road were obtained from the County of Wellington and are provided in **Appendix A**.

The reported intersection volume-to-capacity ratios (v/c) are a measure of the saturation volume for each turning movement, while the levels-of-service (LOS) are a measure of the average delay for each turning movement. Queuing characteristics are reported as the predicted 95th percentile queue for each turning movement.

For analysis purpose, 'critical' intersection movements are defined as traffic movements where:

- Volume to capacity (V/C) ratio of through movement or shared through/turning movement exceeds 0.85; or
- Volume to capacity (V/C) ratio of an exclusive turning movement exceeds 1.0.

**Table 1** summarizes the results of the intersection capacity analyses, while **Appendix B** contains the detailed 2013 baseline intersection capacity/summaries

|                                                                             |                                                | AM Peak Hour                                                                                                             |                                                                                  | PM Peak Hour                                |                                                                                                                         |                                                                                  |
|-----------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Intersection                                                                | Overall<br>v/c<br>(LOS)<br>Delay in<br>Seconds | Critical/<br>Key Movements<br>v/c (LOS) Delay in<br>Seconds                                                              | 95th %ile<br>Queues (m)                                                          | Overall<br>v/c<br>(LOS) Delay<br>in Seconds | Critical/<br>Key Movements<br>v/c (LOS) Delay in<br>Seconds                                                             | 95th %ile<br>Queues (m)                                                          |
| Hespeler Road<br>(RR24) /Wellington<br>Road 124 &<br>Kossuth Road<br>(RR31) | 0.76<br>(B) 17                                 | EBL = 0.62 (C) 21<br>EBR = 0.03 (A) 0<br>NBL = 0.36 (B) 12<br>NBT = 0.86 (C) 23<br>SBT = 0.78 (B) 18<br>SBR = 0.27 (A) 0 | EBL = 65 m<br>EBR = 0 m<br>NBL = 20 m<br>NBT = 185 m<br>SBT = 160 m<br>SBR = 0 m | 0.76<br>(B) 15                              | EBL = 0.6 (C) 21<br>EBR = 0.06 (A) 0<br>NBL = 0.64 (C) 25<br>NBT = 0.72 (B) 15<br>SBT = 0.86 (C) 22<br>SBR = 0.32 (A) 1 | EBL = 60 m<br>EBR = 0 m<br>NBL = 35 m<br>NBT = 145 m<br>SBT = 190 m<br>SBR = 0 m |

#### Table 1 2013 Baseline traffic conditions

Under 2013 baseline traffic conditions, this signalized intersection is operating at LOS 'B' during both the weekday am and pm peak hours with overall delays of 17 and 15 seconds, respectively. The overall v/c ratios during the weekday am and pm peak hours are 0.76.

During the weekday am peak hour, the northbound through movement is identified as a critical movement (albeit only marginally, with a v/c ratio of 0.86); the northbound through vehicle queues occasionally reach 185 metres. During the weekday pm peak hour, the southbound through movement is identified as a critical movement (again, only marginally with a v/c ratio of 0.86); the southbound through vehicle queues occasionally reach 190 metres.

There is queuing evident in the northbound and southbound through movements due to the high volumes along Wellington Road 124/Hespeler Road.

It should be noted that the existing peak directional volumes on Wellington Road 124 just east of Kossuth Road range from between 1020 to 1135 vehicles per hour (am northbound and pm southbound respectively). This demand volume exceeds typical theoretical capacity of this type of roadway (i.e., regional arterial), which is generally in the range of 800 to 1,000 vehicles per hour per lane. However, it is important to state that by virtue of the current volume of traffic being successfully 'processed' by this facility (in excess of this theoretical capacity range), the road's 'real' capacity is at least as high as the observed volume of 1135 vehicles per hour. Nevertheless, prioritizing the widening Wellington Road 124 / Hespeler Road from two-lanes to four lanes in the near term should be considered by the road authorities (at least a localized widening through the Kossuth Road intersection).

# 3. Future background traffic conditions

This section presents the future background traffic conditions for the adopted time horizons of 2015 and 2020. These horizon years were selected to coincide with the projected initial year of operations (estimated for 2015) and to provide a longer-term planning horizon five years beyond the Pit opening (2020). This is a typical analysis approach used in the preparation of traffic impact studies.

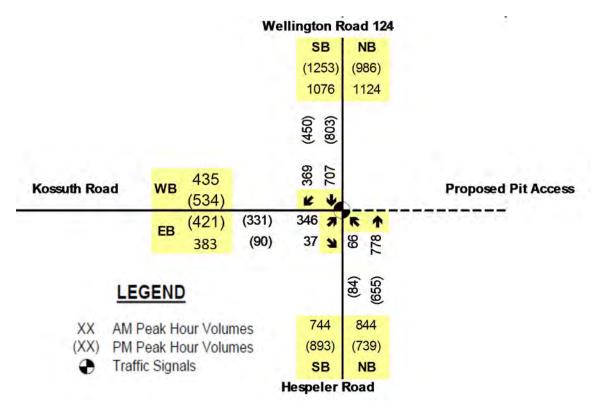
### 3.1 Roadway improvements

According to Region of Waterloo Transportation Master Plan (January 2011), the widening of Kossuth Road is identified, but beyond a 20 year time horizon. Based on consultation with Wellington County staff, Wellington Road 124 is scheduled to be resurfaced from Kossuth to the City of Guelph limits in the next five years (within the study horizon year of 2020). There are no road widening improvements programmed by Wellington County and Waterloo Region for any identified haul route roadways within the time horizons selected for this study. Therefore, the existing lane configurations are carried forward into the future analyses as a base condition.

### 3.2 Future traffic growth

A new crossing of the Grand River in Waterloo, The Fairway Road Bridge, opened in December 2012. As a result of this new crossing, and in evidence from a review of traffic data collected by the Region of Waterloo and the County of Wellington obtained for this study before and after the bridge opening, some traffic patterns have changed on Kossuth Road, Hespeler Road and Wellington Road 124, making it difficult to credibly apply a blanket growth rate to account for future background traffic increases.

However, based on a review of pre-bridge growth in these corridors and a comparison of postbridge traffic trends during two data points collected in 2013 (both post-bridge opening), an annual growth rate of 5% was applied to the baseline 2013 traffic flows to predict future non-pit related traffic volumes along the haul routes under both 2015 and 2020 scenarios.


#### 3.3 Future background operating conditions

#### 3.3.1 2015 Future background conditions

The traffic volumes for the near-term 2015 horizon are shown in **Figure 4a**. These am and pm 2015 future background scenarios were then subject to intersection capacity analyses based on the same methodologies utilized for 2013 baseline conditions, (HCM 2000 procedures and Synchro 8 software). Traffic signal timings were optimized using Synchro 8 software.

**Table 2** summarizes the future 2015 future background traffic operations for the study intersections.Detailed 2015 future background intersection capacity analysis reports are in **Appendix C**.

#### Figure 4a Fugure (2015) background traffic volumes



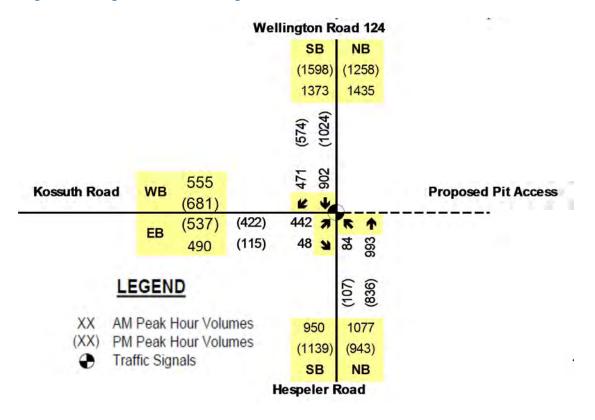
#### Table 2 2015 Fugure background traffic conditions (without Pit traffic)

|                                                                             | AM Peak Hour                                   |                                                                                                                         |                                                                                  | PM Peak Hour                                |                                                                                                                         |                                                                                  |
|-----------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Intersection                                                                | Overall<br>v/c<br>(LOS)<br>Delay in<br>Seconds | Critical/<br>Key Movements<br>v/c (LOS) Delay in<br>Seconds                                                             | 95th %ile<br>Queues (m)                                                          | Overall<br>v/c<br>(LOS) Delay<br>in Seconds | Critical/<br>Key Movements<br>v/c (LOS) Delay in<br>Seconds                                                             | 95th %ile<br>Queues (m)                                                          |
| Hespeler Road<br>(RR24) /Wellington<br>Road 124 &<br>Kossuth Road<br>(RR31) | 0.83<br>(C) 20                                 | EBL = 0.71 (C) 27<br>EBR = 0.03 (A) 0<br>NBL = 0.46 (B) 15<br>NBT = 0.9 (C) 28<br>SBT = 0.82 (C) 20<br>SBR = 0.29 (A) 0 | EBL = 85 m<br>EBR = 0 m<br>NBL = 25 m<br>NBT = 205 m<br>SBT = 175 m<br>SBR = 0 m | 0.82<br>(B) 19                              | EBL = 0.7 (C) 29<br>EBR = 0.07 (A) 0<br>NBL = 0.82 (D) 52<br>NBT = 0.74 (B) 16<br>SBT = 0.89 (C) 25<br>SBR = 0.35 (A) 1 | EBL = 85 m<br>EBR = 0 m<br>NBL = 45 m<br>NBT = 135 m<br>SBT = 215 m<br>SBR = 0 m |

Under 2015 background conditions, this signalized intersection is expected to operate at LOS 'C' and 'B' during the weekday am and pm peak hours with overall delays of 20 and 19 seconds, respectively. The overall v/c ratios during the weekday am and pm peak hours are 0.83 and 0.82, respectively.

During the weekday am peak hour, the northbound through movement is predicted to be 'critical' (>0.85) with a v/c ratio of 0.90 and occasionally significant queuing. During the weekday pm peak hour, the 'returning commuter trip' southbound through the intersection is likewise identified as critical with a v/c ratio of 0.89 and occasionally significant queuing.

The projected 2015 background peak directional volumes on Wellington Road 124 (their highest level predicted just east of Kossuth Road) are expected to grow to between 1125 to 1250 vehicles per hour (am northbound and pm southbound respectively). As mentioned under the existing conditions, this future demand volume exceeds the typical <u>theoretical</u> capacity of a regional arterial


roadway. This reinforces the recommendation that the road authorities should investigate (indeed prioritize) improvements in this corridor in the short term (at least a localized widening through the Wellington Road 124 / Hespeler Road intersection).

#### 3.3.2 2020 Future background conditions

The estimated 5% per annum growth rate was then applied to simulate the 2020 horizon with the results shown in **Figure 4b**.

The 2020 future background scenario was then subject to intersection capacity analyses based on the same methodologies utilized previously.

**Table 3a** summarizes the future 2020 future background traffic operations for the studyintersections.Detailed 2020 future background intersection capacity analysis reports are in**Appendix D**.



#### Figure 4b Fugure (2020) background traffic volumes

#### Table 3a 2020 Fugure background traffic conditions (without Pit traffic)

|                                                                             | AM Peak Hour                                |                                                                                                                          |                                                                                   | PM Peak Hour                                |                                                                                                                          |                                                                                   |
|-----------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Intersection                                                                | Overall<br>v/c<br>(LOS) Delay<br>in Seconds | Critical/<br>Key Movements<br>v/c (LOS) Delay in<br>Seconds                                                              | 95th %ile<br>Queues (m)                                                           | Overall<br>v/c<br>(LOS) Delay<br>in Seconds | Critical/<br>Key Movements<br>v/c (LOS) Delay in<br>Seconds                                                              | 95th %ile<br>Queues (m)                                                           |
| Hespeler Road<br>(RR24) /Wellington<br>Road 124 &<br>Kossuth Road<br>(RR31) | 1.05<br>(D) 52                              | EBL = 1.04 (F) 95<br>EBR = 0.04 (A) 0<br>NBL = 0.75 (D) 54<br>NBT = 1.00 (D) 49<br>SBT = 1.03 (E) 64<br>SBR = 0.37 (A) 1 | EBL = 200 m<br>EBR = 0 m<br>NBL = 35 m<br>NBT = 370 m<br>SBT = 350 m<br>SBR = 0 m | 1.09<br>(D) 53                              | EBL = 1.1 (F) 117<br>EBR = 0.09 (A) 0<br>NBL = 0.97 (F) 106<br>NBT = 0.82 (B) 20<br>SBT = 1.1 (F) 83<br>SBR = 0.45 (A) 1 | EBL = 200 m<br>EBR = 0 m<br>NBL = 55 m<br>NBT = 225 m<br>SBT = 405 m<br>SBR = 0 m |

Under 2020 background conditions, this signalized intersection is expected to operate at LOS 'D' during both the weekday am and pm peak hours with overall delays of 52 and 53 seconds, respectively. The overall v/c ratios during the weekday am and pm peak hours are 1.05 and 1.09, respectively, indicating the intersection will reach its design capacity (likely sometime before 2020).

During the weekday am peak hour, the eastbound left turn, northbound and southbound through movements will reach saturation with v/c ratios of 1.04, 1.00 and 1.03, respectively. During the weekday pm peak hour, the eastbound and northbound left turn, and southbound through movements will likewise reach design capacity with v/c ratios of 1.10, 0.97 and 1.10, respectively.

The projected 2020 Background peak directional volumes on Wellington Road 124 just east of Kossuth Road range from between 1435 to 1600 vehicles per hour (am northbound and pm southbound respectively). This demand volume exceeds typical <u>theoretical</u> capacity of this type of roadway (i.e., regional arterial). Therefore, the widening of Wellington Road 124 / Hespeler Road to four lanes (at least through this intersection) is recommended within the study horizon year of 2020 to accommodate the future predicted traffic demand.

To provide an operational analysis of the long-term horizon with the recommended intersection widening in place, we have re-run the Synchro analyses with two through lanes along Wellington Road 124.

**Table 3b** summarizes the future 2020 future background traffic operations with the widening of Wellington Road 124 /Hespeler Road to four lanes. Detailed 2020 future background intersection capacity analysis reports are in **Appendix D**.

|                                                                             | AM Peak Hour                                |                                                                                                                          |                                                                                 | PM Peak Hour                                |                                                                                                                          |                                                                                  |
|-----------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Intersection                                                                | Overall<br>v/c<br>(LOS) Delay<br>in Seconds | Critical/<br>Key Movements<br>v/c (LOS) Delay in<br>Seconds                                                              | 95th %ile<br>Queues (m)                                                         | Overall<br>v/c<br>(LOS) Delay<br>in Seconds | Critical/<br>Key Movements<br>v/c (LOS) Delay in<br>Seconds                                                              | 95th %ile<br>Queues (m)                                                          |
| Hespeler Road<br>(RR24) /Wellington<br>Road 124 &<br>Kossuth Road<br>(RR31) | 0.78<br>(B) 17                              | EBL = 0.85 (C) 35<br>EBR = 0.04 (A) 0<br>NBL = 0.52 (B) 18<br>NBT = 0.63 (B) 14<br>SBT = 0.71 (C) 20<br>SBR = 0.37 (A) 1 | EBL = 125 m<br>EBR = 0 m<br>NBL = 15 m<br>NBT = 85 m<br>SBT = 95 m<br>SBR = 0 m | 0.8<br>(B) 16                               | EBL = 0.83 (C) 33<br>EBR = 0.09 (A) 0<br>NBL = 0.72 (C) 32<br>NBT = 0.53 (B) 12<br>SBT = 0.77 (C) 21<br>SBR = 0.45 (A) 1 | EBL = 120 m<br>EBR = 0 m<br>NBL = 25 m<br>NBT = 65 m<br>SBT = 110 m<br>SBR = 0 m |

# Table 3b Future background traffic conditions (with Wellington Road 124 / Hespeler Road widening)

Under 2020 future background traffic conditions, with the implementation of a localized widening of Wellington Road 124 / Hespeler Road to four lanes through the Kossuth Road intersection, this signalized intersection is expected to operate at an improved overall LOS 'B' during both weekday am and pm peak hours with overall delays of 17 and 16 seconds, respectively. The overall v/c ratios during the weekday am and pm peak hours are 0.78 and 0.80, respectively. Further, all individual movements are likewise expected to operate at 'good' levels of service (LOS 'B') with no critical movements to report.

## 4. Site Generated Traffic

### 4.1 Traffic generation

In order to generate the estimated truck traffic associated with the application, the following assumptions and base data have been adopted based on the proposed Operations Plan dated April 2014:

- Annual Extraction Limit (License application) = 650,000 tonnes
- Pit operations proposed as follows:
  - Weekday shipping hours of 6:00 am to 7:00 pm (13 hours)
  - Saturday shipping hours of 6:00 am to 6:00 pm (12 hours)
  - Total of 77 shipping hours a week or an average of 334 hours a month
  - Average truck capacity = 35 tonnes

The Pit is proposed to operate year round from January to December with variable amounts of material extraction and shipping depending on the month. Based on estimates from our experience on previous pit applications, peak shipping generally occurs during the 'construction season' between the months of June and October. Based on our expectations, it is likely that a maximum of up to 65,000 tonnes of material shipped per month during this busy construction period. **Table 4** below summarizes the monthly breakdown of material extraction based on this activity presumption.

| Month          | Material<br>Volume/Month<br>(tonnes) |
|----------------|--------------------------------------|
| January        | 37000                                |
| February       | 37000                                |
| March          | 37000                                |
| April          | 57000                                |
| May            | 57000                                |
| <u>June</u>    | <u>65000</u>                         |
| July           | <u>65000</u>                         |
| <u>August</u>  | <u>65000</u>                         |
| September      | <u>65000</u>                         |
| <u>October</u> | <u>65000</u>                         |
| November       | 57000                                |
| December       | 43000                                |

#### Table 4 Monthly material shipping estimates

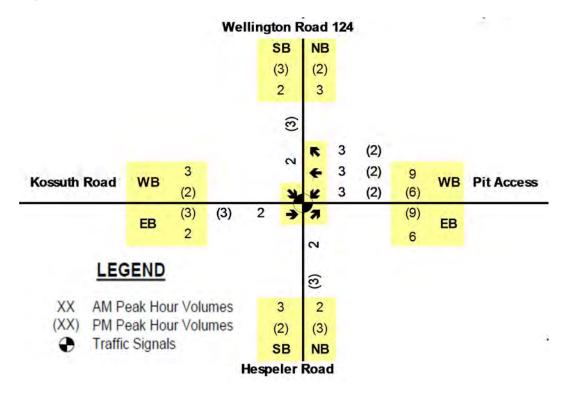
To account for the occasional periods of higher-volume trucking that is likely to occur during highconstruction activity (typically between June and October) the trip generation used in the analysis of Pit-generated traffic impacts is based on the peak level of shipping / trucking activity during these busy summertime periods. During this peak season, a total of 65,000 tonnes of material is proposed to be extracted per month. This equates to 195 tonnes of material per hour based on an average of 334 shipping hours per month. With a capacity of approximately 35 tonnes per truck, 195 tonnes of material extraction generates 6 outbound loaded truck trips per hour (plus the same number of returning trucks). It has been our experience that additional peaking occurs during early morning shipping activity, as it is common for trucks to be loaded and waiting to leave the Pit before 6:00 am when the scales begin operation and shipping commences. As a result, a surge of outbound loaded trucks could occasionally occur creating a short-lived 'peak within a peak' condition (generally occurring prior to the adjacent street peak). Similarly, in the afternoon as closing time approaches, a spike in empty inbound trucks might also occur as operators attempt to deliver a late-in-the-day shipment to construction sites.

To account for this peaking, the am peak hour outbound and pm peak hour inbound truck volume was increased by an additional 50%, equating to 9 loaded truck trips per hour. We have adopted this peak trip generation as the design-hour vehicle volume for our site-impact analysis that follows. As alluded to above, these 'peak within a peak' activities are predicted to occur largely outside of the adjacent street peak hours, so in this respect we are predicting an unlikely (and conservative) scenario of the Pit and adjacent street peaks coinciding.

It is acknowledged that there may also be on-site recycling of asphalt and concrete at this pit, but this is not planned to be a regular occurrence. Furthermore, it is likely that most of this incoming recyclable material is already accounted for by the estimated inbound trucks for material pick-up and outbound shipping. Therefore, the traffic flows associated with this potential occasional activity have not been considered separately in the analysis, their effects largely captured by the estimated volume of returning 'inbound' trucks.

With adoption of the various peaking factors described above and employed in the regular aggregate shipping activity estimates, we have portrayed a conservative (high) trucking activity level of site-related traffic flows, and therefore impacts on the abutting street system.

### 4.2 Traffic distribution and assignment

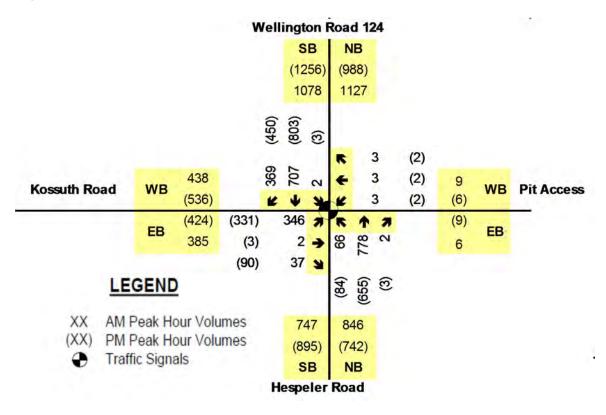

Consultations with the applicant have indicated that about one-third of the material will be destined to the Guelph area; one-third to the Kitchener area; and one-third south to Highway 401 (to markets further away to the east and west). Therefore, we have assigned the predicted Pit-generated trucks onto the prescribed haul route in equal measure to the following routes:

- Right turns out to go northbound along Wellington Road 124 to Guelph;
- Through moves out to go westbound along Kossuth Road to Kitchener; and
- Left turns out to go southbound along Hespeler Road to Highway 401.

All these roadways have been deemed acceptable and appropriate for use as aggregate haul routes as per Wellington County and Waterloo Region Official Plans.

The above-noted traffic distribution has been applied to the calculated estimates of the peak hourly truck trips as described in **Section 4.1** and the resultant truck traffic volume assignments are shown in **Figure 5**.

#### Figure 5 Total site traffic volumes




## 5. Total future traffic impact analysis

For the purpose of the site impact analyses, we have employed Passenger Car Equivalent (PCE) factors to account for the additional time it takes a heavy vehicle (in this case, different PCE's for each the loaded and empty gravel trucks) to travel through an intersection. Based on our experience, we have adopted a PCE of 3.5 for outbound loaded trucks and a PCE of 2.0 for inbound empty trucks. The truck traffic volumes expressed as PCEs are shown in a figure contained in **Appendix E**. Traffic signal timings were optimized using Synchro 8 software.

#### 5.1 2015 Total future operations

The estimated truck trip assignments (**Figure 5**) have been combined with the 2015 future background traffic (**Figure 4a**) to produce the estimated 2015 Total Future Traffic shown in **Figure 6a**.



#### Figure 6a Total (2015) future traffic volumes

The total volumes were then subject to intersection capacity analyses based on the same methodologies utilized previously herein, plus the <u>PCE flows</u> for Spencer truck traffic. **Table 5** summarizes the 2015 total future traffic operations. Detailed 2015 total future intersection capacity analysis reports are included in **Appendix E**.

|                                                                             |                                                | AM Peak Hour                                                                                                                                                                               |                                                                                    | PM Peak Hour                                   |                                                                                                                                                                                            |                                                     |  |
|-----------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|
| Intersection                                                                | Overall<br>v/c<br>(LOS)<br>Delay in<br>Seconds | Critical/<br>Key Movements<br>v/c (LOS) Delay in<br>Seconds                                                                                                                                | 95th %ile<br>Queues (m)                                                            | Overall<br>v/c<br>(LOS)<br>Delay in<br>Seconds | Critical/<br>Key Movements<br>v/c (LOS) Delay in<br>Seconds                                                                                                                                | 95th %ile<br>Queues (m)                             |  |
| Hespeler Road<br>(RR24) /Wellington<br>Road 124 &<br>Kossuth Road<br>(RR31) | 0.95<br>(C) 30                                 | EBTL = 0.97 (E) 62<br>EBR = 0.03 (A) 0<br>WBTLR = 0.12 (B) 17<br>NBL = 0.57 (C) 22<br>NBT = 0.95 (D) 37<br>NBR = 0.01 (A) 10<br>SBL = 0.09 (B) 12<br>SBT = 0.86 (C) 26<br>SBR = 0.29 (A) 1 | WBTLR = 10 m<br>NBL = 30 m<br>NBT = 210 m<br>NBR = 0 m<br>SBL = 5 m<br>SBT = 180 m | 0.92<br>(C) 28                                 | EBTL = 0.99 (E) 75<br>EBR = 0.07 (A) 1<br>WBTLR = 0.08 (C) 23<br>NBL = 0.85 (E) 65<br>NBT = 0.74 (B) 20<br>NBR = 0.01 (A) 10<br>SBL = 0.06 (A) 10<br>SBT = 0.89 (C) 29<br>SBR = 0.35 (A) 1 | NBL = 50 m<br>NBT = 150 m<br>NBR = 0 m<br>SBL = 5 m |  |

#### Table 5 2015 Total future traffic conditions (with Pit traffic included)

The following lane configurations are recommended at the Wellington Road 124/Kossuth Road intersection to accommodate Spencer Pit-related traffic:

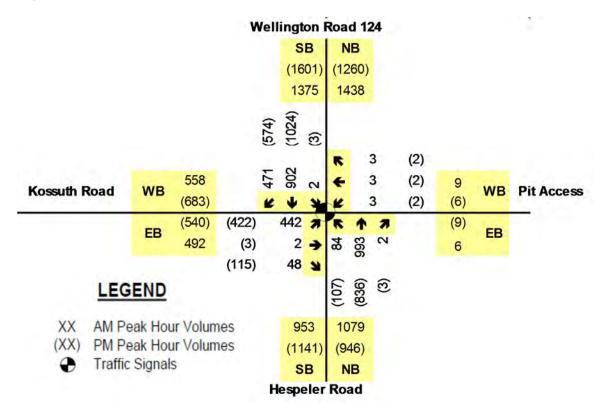
- A southbound exclusive left turn lane to serve inbound truck trips from the northeast and to separate these turns from the heavy southbound through movement flows
- Northbound right turn taper to provide a deceleration facility for inbound trucks to the Pit, and to separate these movements from the heavy northbound traffic flow
- A new site access opposite from, and aligned with, Kossuth Road

**Figure 7** is a concept design illustrating the above recommended lane configurations for the Wellington Road 124/Kossuth Road (Pit Access) intersection to accommodate Pit-related traffic.

Based on the above lane configuration, under 2015 future total traffic conditions, this signalized intersection is expected to operate at LOS 'C' during both the weekday am and pm peak hours with overall delays of 30 and 28 seconds, respectively. The overall v/c ratios during the weekday am and pm peak hours are 0.95 and 0.92, respectively, indicating that the intersection is expected to operate within its theoretical design capacity under the existing two-lane Wellington Road 124 configuration. While it is acknowledged that the intersection is expected to operate with high v/c ratios, these metrics are balanced by the 'good' LOS and short delays expected.

During the weekday am peak hour, the eastbound shared left-through, northbound and southbound through movements are identified as critical movements with v/c ratios of 0.97, 0.95 and 0.86, respectively. During the weekday pm peak hour, the eastbound shared left-through and southbound through movement are identified as critical movements with v/c ratios of 0.99 and 0.89, respectively.

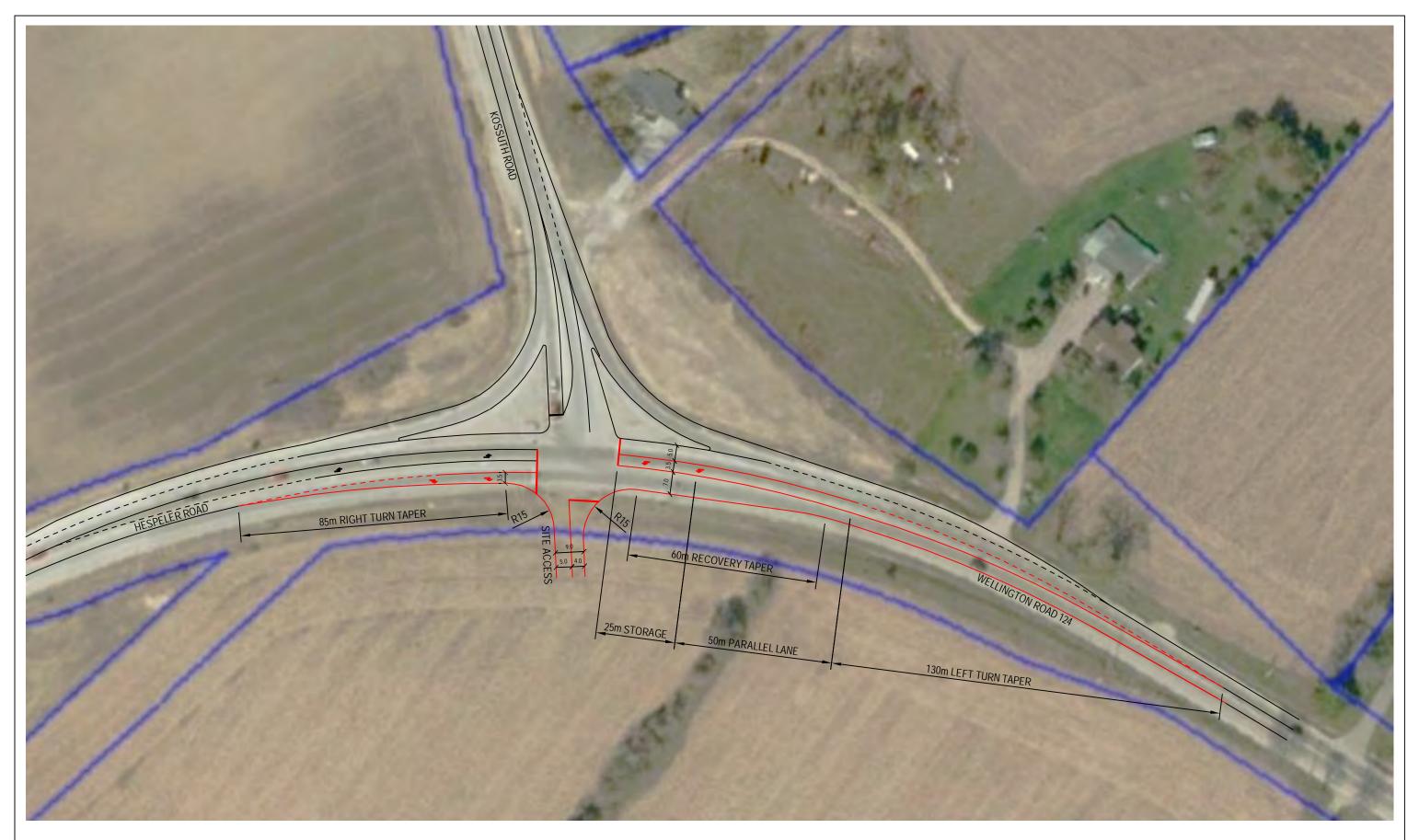
It should be noted that the Spencer Pit traffic does not contribute volumes to previously identified critical movements, nor does predicted site traffic make those operations significantly worse than during the future background condition. This suggests that with construction of the recommended turn lanes at the Pit access, Spencer Pit traffic can be accommodated by the existing two-lane Wellington Road 124 facility with acceptable impacts on the pre-existing (background) intersection operations.


Furthermore, even under the projected seasonal / daily peak truck trip generation scenario, traffic generated by the Spencer Pit represents less than 1% of the expected 2015 total future flows along

Wellington Road 124. This represents an imperceptible change in traffic flow and is well within what would be expected in daily traffic volume variation.

### 5.2 2020 Total future operations

The estimated truck trip assignments (**Figure 5**) w combined with the 2020 future background traffic (**Figure 4b**) to produce the estimated 2020 Total Future Traffic shown in **Figure 6b**.


The total 2020 volumes were then subject to intersection capacity analyses based on the same methodologies utilized previously herein, again using the <u>PCE flows</u> for Spencer truck traffic. The intersection upgrades and site access recommended for the 2015 condition (see **Figure 7**) have been dutifully incorporated into the 2020 horizon analysis.



#### Figure 6b Total (2020) future traffic volumes

For comparison purposes, total 2020 capacity analyses includes two scenarios; Wellington Road 124 as one lane in each direction, and the widening of Wellington Road 124 (and Hespeler Road) to four lanes through the intersection at Kossuth Road.

**Table 6a** summarizes the 2020 total future traffic operations with existing Wellington Road 124 one lane in each direction. Detailed 2020 total future intersection capacity analysis reports are included in **Appendix F**.



| No   | Revision Note: * indicates signatures on original issue of drawing or last revision of drawing | Drawn | Job<br>Manager | Project<br>Director | Date |
|------|------------------------------------------------------------------------------------------------|-------|----------------|---------------------|------|
| Plot | Date: 21 November 2013 - 6:22 PM Platted by: Hong Shen                                         | Ca    | d File No:     | X-\Transfer         |      |

| 0 5 | 10         | 15     | 20 | 25m |
|-----|------------|--------|----|-----|
|     | E 1:500 AT | ODICIN |    |     |





|                                                                                                                    | Drawn M.D.                          | Des        |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------|
| GHD Inc.                                                                                                           | Drafting<br>Check J.B.              | Des<br>Che |
| This document may only be used by<br>GHD's client (and any other person who                                        | Approved W.M.<br>(Project Director) |            |
| GHD has agreed can use this document)                                                                              | Date November                       | 13, 2      |
| for the purpose for which it was prepared<br>and must not be used by any other<br>person or for any other purpose. | Scale AS SHOWN                      |            |

22 PM Plotted by: Hong Shen Cad File No: X:Transtech/Project Files/2013/13268 SPENCER PITVanalysis/Functional Design/Fig 7 - FD-1 Sketch (UPDATED) - Nov 21, 2013.dwg

| igner M.D.                                                                     |                         | Tri City Lna             |             |                       |  |  |  |  |
|--------------------------------------------------------------------------------|-------------------------|--------------------------|-------------|-----------------------|--|--|--|--|
| ign J.B.<br>ck J.B.                                                            |                         | •                        | Spencer Pit |                       |  |  |  |  |
| 013                                                                            |                         | Wellington<br>Concept De |             | th Road (Site Access) |  |  |  |  |
| This Drawing must not be<br>used for Construction unless<br>signed as Approved | Original Size<br>Arch D | Drawing No:              | Figure 7    | Rev: A                |  |  |  |  |

|                                                                             | AM Peak Hour                                   |                                                                                                                                                                                                |                                                                                                   | PM Peak Hour                                   |                                                                                                                                                                                                 |                                                                                                                                |  |
|-----------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| Intersection                                                                | Overall<br>v/c<br>(LOS)<br>Delay in<br>Seconds | Critical/<br>Key Movements<br>v/c (LOS) Delay in<br>Seconds                                                                                                                                    | 95th %ile<br>Queues (m)                                                                           | Overall<br>v/c<br>(LOS)<br>Delay in<br>Seconds | Critical/<br>Key Movements<br>v/c (LOS) Delay in<br>Seconds                                                                                                                                     | 95th %ile<br>Queues (m)                                                                                                        |  |
| Hespeler Road<br>(RR24) /Wellington<br>Road 124 &<br>Kossuth Road<br>(RR31) | 1.22<br>(F) 99                                 | EBTL = 1.26 (F) 174<br>EBR = 0.04 (C) 25<br>WBTLR = 0.13 (C) 26<br>NBL = 0.75 (D) 53<br>NBT = 1.12 (F) 94<br>NBR = 0.01 (B) 12<br>SBL = 0.14 (C) 22<br>SBT = 1.17 (F) 121<br>SBR = 0.40 (C) 20 | EBR = 10 m<br>WBTLR = 15 m<br>NBL = 40 m<br>NBT = 400 m<br>NBR = 0 m<br>SBL = 10 m<br>SBT = 380 m | 1.26<br>(F) 93                                 | EBTL = 1.27 (F) 179<br>EBR = 0.14 (C) 28<br>WBTLR = 0.09 (C) 28<br>NBL = 0.98 (F) 105<br>NBT = 0.92 (D) 36<br>NBR = 0.01 (B) 11<br>SBL = 0.13 (B) 18<br>SBT = 1.25 (F) 153<br>SBR = 0.50 (C) 20 | EBTL = 220 m<br>EBR = 25 m<br>WBTLR = 10 m<br>NBL = 55 m<br>NBT = 300 m<br>NBR = 0 m<br>SBL = 5 m<br>SBT = 440 m<br>SBR = 45 m |  |

# Table 6a 2020 Total future traffic conditions (without Wellington Road 124 widening)

With the lane configurations discussed in 2015 future total scenario, under 2020 future total traffic conditions, this signalized intersection is expected to experience congestion and long delays with overall delays of 99 and 93 seconds, respectively during the weekday am and pm peak hours. The overall v/c ratios during the weekday am and pm peak hours are 1.22 and 1.26, respectively, indicating the intersection is expected to exceed its design capacity.

During the weekday am peak hour, the eastbound shared left-through, northbound and southbound through movements are identified as critical movements with v/c ratios of 1.26, 1.12 and 1.17, respectively. During the weekday pm peak hour, the eastbound shared left-through, northbound left turn, northbound through, and southbound through movements are identified as critical movements with v/c ratios of 1.27, 0.98, 0.92 and 1.25, respectively.

As discussed in **Section 3.3.2**, considering future background traffic growth, the estimated 2020 background (without Pit traffic) peak direction volumes on Wellington Road 124 just east of the Kossuth Road are expected to increase to approximately 1600 vehicles per hour in the peak direction, far in excess of this road's theoretical capacity as a two-lane arterial road. This indicates that it is predicted growth in background traffic flows (in combination with existing traffic volumes) that compels the widening of Wellington Road 124 and that the truck trips introduced by the Spencer Pit do not trigger the widening of the facility.

**Table 6b** summarizes the 2020 total future traffic operations with the widening of Wellington Road124 (and Hespeler Road) to four lanes. Detailed 2020 total future intersection capacity analysisreports are included in **Appendix F**.

|                                                                             | AM Peak Hour                                   |                                                                                                                                                                                            |                                                                                                                      | PM Peak Hour                                   |                                                                                                                                                                                            |                                                                                                                     |  |
|-----------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| Intersection                                                                | Overall<br>v/c<br>(LOS)<br>Delay in<br>Seconds | Critical/<br>Key Movements<br>v/c (LOS) Delay in<br>Seconds                                                                                                                                | 95th %ile<br>Queues (m)                                                                                              | Overall<br>v/c<br>(LOS)<br>Delay in<br>Seconds | Critical/<br>Key Movements<br>v/c (LOS) Delay in<br>Seconds                                                                                                                                | 95th %ile<br>Queues (m)                                                                                             |  |
| Hespeler Road<br>(RR24) /Wellington<br>Road 124 &<br>Kossuth Road<br>(RR31) | 0.93<br>(C) 29                                 | EBTL = 0.96 (D) 55<br>EBR = 0.04 (A) 1<br>WBTLR = 0.10 (B) 14<br>NBL = 0.67 (D) 37<br>NBT = 0.77 (C) 26<br>NBR = 0.01 (B) 15<br>SBL = 0.09 (C) 22<br>SBT = 0.86 (D) 36<br>SBR = 0.37 (A) 1 | EBTL = 160 m $EBR = 0 m$ $WBTLR = 10 m$ $NBL = 25 m$ $NBT = 120 m$ $NBR = 0 m$ $SBL = 5 m$ $SBT = 135 m$ $SBR = 0 m$ | 0.93<br>(C) 29                                 | EBTL = 0.96 (D) 55<br>EBR = 0.09 (A) 1<br>WBTLR = 0.03 (B) 15<br>NBL = 0.77 (D) 46<br>NBT = 0.62 (C) 21<br>NBR = 0.01 (B) 14<br>SBL = 0.09 (C) 21<br>SBT = 0.93 (D) 42<br>SBR = 0.45 (A) 1 | EBTL = 155 m $EBR = 0 m$ $WBTLR = 10 m$ $NBL = 35 m$ $NBT = 90 m$ $NBR = 0 m$ $SBL = 5 m$ $SBT = 155 m$ $SBR = 0 m$ |  |

# Table 6b 2020 Total fugure traffic conditions (with Wellington Road 124 widening)

Under 2020 future total traffic conditions, with the implementation of a widening of Wellington Road 124/Hespeler Road to four lanes through the Kossuth Road intersection, this signalized intersection is expected to operate at a LOS 'C' during both the weekday am and pm peak hours with overall delays of 29 and 29 seconds, respectively. The overall v/c ratios during the weekday am and pm peak hours are 0.93 and 0.93, respectively indicating that the intersection is expected to operate within its theoretical design capacity.

During the weekday am peak hour, the eastbound shared left-through and southbound through movements are identified as critical movements (v/c ratios of 0.96 and 0.86) with delays of 55 and 36 seconds, respectively. During the weekday pm peak hour, the eastbound shared left-through and southbound through movements are identified as critical movements (v/c ratios of 0.96 and 0.93) with delays of 55 and 42 seconds, respectively. All other individual movements are expected to operate at acceptable levels of service within their theoretical design capacity.

As is evident from a review of the above, with the implementation of the recommended intersection and pit site access improvements, <u>in conjunction with</u> the widening of Wellington Road 124 and Hespeler Road to four lanes through the Kossuth Road intersection, future total traffic flows to the 2020 horizon can be accommodated at the study intersection with acceptable levels of service. This indicates that it is predicted growth in background traffic flows (in combination with existing traffic volumes) that compels the widening of Wellington Road 124 and that the very few additional truck trips introduced by the Spencer Pit do not trigger the widening of the facility.

Furthermore, as mentioned in the 2015 total future scenario, even under the projected seasonal / daily peak truck trip generation scenario, traffic generated by the Spencer Pit represents less than 1% of the expected 2015 total future flows along Wellington Road 124. This represents an imperceptible change in traffic flow and is well within what would be expected in daily traffic volume variation.

## 6. Findings and recommendations

The following are key findings with regard to the proposed Spencer Pit application:

- The haul route is proposed as;
  - Wellington Road 124 to serve the local Guelph area
  - Kossuth Road (Waterloo Regional Road 31) to serve the local Kitchener market
  - Hespeler Road (Waterloo Regional Road 24) to provide a route south to Highway 401 and markets further out to the east and west
- The existing operation of the intersection of Wellington Road 124/Hespeler Road and Kossuth Road has good operating characteristics with no 'critical' movements. There is queuing evident in the northbound and southbound through movements due to the high volumes along Wellington Road 124/Hespeler Road.
  - The existing peak directional volumes on Wellington Road 124 just east of Kossuth Road range from between 1020 to 1135 vehicles per hour (AM northbound and PM southbound respectively). This demand volume exceeds typical <u>theoretical</u> capacity of this type of roadway (generally in the range of 800 to 1,000 vehicles per hour per lane), although it must be stated that this volume of traffic was observed processed through the facility, so the 'actual' capacity of Wellington Road 124 / Hespeler Road is at least 1135 vphpl.
- Future background growth is estimated to be 5% per annum and two horizon years were selected for study; 2015 and 2020
- The proposed Pit operation is expected to generate a seasonal / daily peak of 15 (6 inbound and 9 outbound) trips during the morning peak hour and 15 (9 inbound and 6 outbound) trips during the afternoon peak hour. This represents about 1% of the future traffic flows along the abutting haul route roadways.
  - Considering future background traffic growth, the estimated 2020 background (without Pit traffic) peak direction volumes on Wellington Road 124 just east of the Kossuth Road are expected to increase to approximately 1600 vehicles per hour in the peak direction, far in excess of this road's theoretical capacity as a two-lane arterial road. Therefore, the widening of Wellington Road 124 (and Hespeler Road into Waterloo Region) to four lanes should be considered by the road authorities in the medium term (by 2020) to accommodate existing and future background traffic growth.
  - The results of our analysis indicates that the 2015 background traffic growth, plus the trips associated with the proposed Spencer Pit can be accommodated by the existing roadway system with the implementation of exclusive turn lane configurations at the intersection of Wellington Road 124/Kossuth Road as recommended herein. The intersection is expected to operate at 'good' levels of service (LOS 'C') and within its capacity assuming Wellington Road 124 is still only one lane in each direction.
  - By 2020, with the implementation of the recommended intersection and pit site access improvements, in conjunction with a recommended widening to four lanes of Wellington Road 124/Hespeler Road through the Kossuth Road intersection, future total traffic flows to the 2020 horizon can be accommodated at the study intersection with 'good' levels of service (LOS 'C') in the overall intersection. It is however the predicted growth in background traffic flows (in combination with existing traffic volumes) that compels the

widening of Wellington Road 124 and the truck trips introduced by the Spencer Pit do not trigger the widening of the facility.

Based on our study findings, we recommend the following improvements:

- By 2015, the following improvements are recommended at the Wellington Road 124 / Kossuth Road intersection to accommodate Spencer Pit-related traffic:
  - a southbound exclusive left turn lane to serve inbound truck trips from the northeast and to separate these turns from the heavy southbound through movement flows;
  - Northbound right turn taper to provide a deceleration facility for inbound trucks to the Pit, and to separate these movements from the heavy northbound traffic flow;
  - A new site access opposite from, and aligned with, Kossuth Road;
  - Associated signalized intersection infrastructure (poles, heads, etc.) to accommodate above;
  - The recommended pit access lane configurations shall be incorporated into the site plans upon acceptance by the road authority.
- By 2020, based on the predicted background traffic growth (and unrelated to the Spencer Pit impacts), the widening of Wellington Road 124 and Hespeler Road to four lanes through the Kossuth Road intersection is recommended.



## AMENDMENTS MADE APRIL 26, 2010 TO:

OFFICIAL PLAN AMENDMENTS 19, 21,44, 43, 68, 69, 28

AMENDMENTS MADE JULY 6/10

OPA #71, 72, 56

AMENDMENTS MADE FEBRUARY 12/13

OPA # 7, # 73, #74, #76, #79, #82,

### **12.4 PUBLIC TRANSIT**

The County of Wellington has not reached the point where public transit is a viable transportation option. Wellington will continue to focus its planning efforts on supporting urban centres and downtowns so that public transit may become a viable option.

### 12.5 ROADWAYS

#### 12.5.1 General

Roadways are far and away the most important means of transportation in Wellington. The County of Wellington accepts the heavy reliance on automobiles and trucks in small towns and rural areas and will make its best efforts at encouraging safe, efficient and convenient community design practices which facilitate people's desires to use automobiles.

#### 12.5.2 Provincial Highways

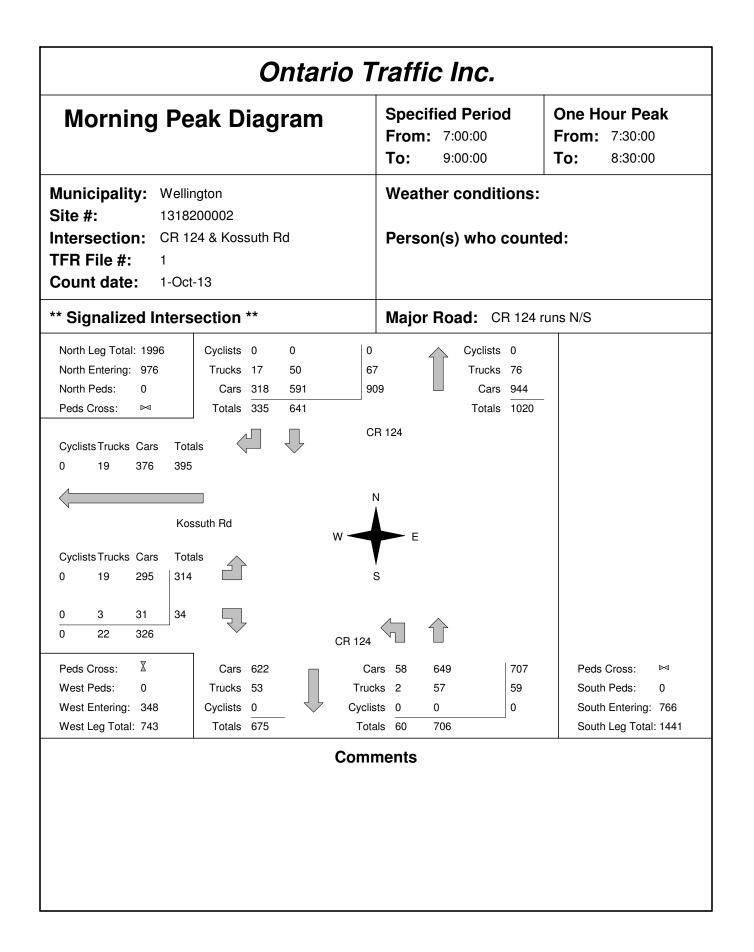
This classification applies to roadways under the jurisdiction of the Ontario Ministry of Transportation. These highways include Nos. 6, 7, 9, 89 and 401. Provincial highways generally function as major roadways or arterials but are regulated under the Public Transportation and Highway Improvement Act. Provincial highways carry large volumes of traffic at relatively high speed, therefore access to provincial highways is limited. Ministry of Transportation approvals (permits) are required for all entrances (new or altered), buildings/structures and signs located adjacent to the highway prior to any construction being undertaken. Access will only be considered to those properties abutting a provincial highway that meet the geometric minimum safety and requirements of the Ministry of Transportation.

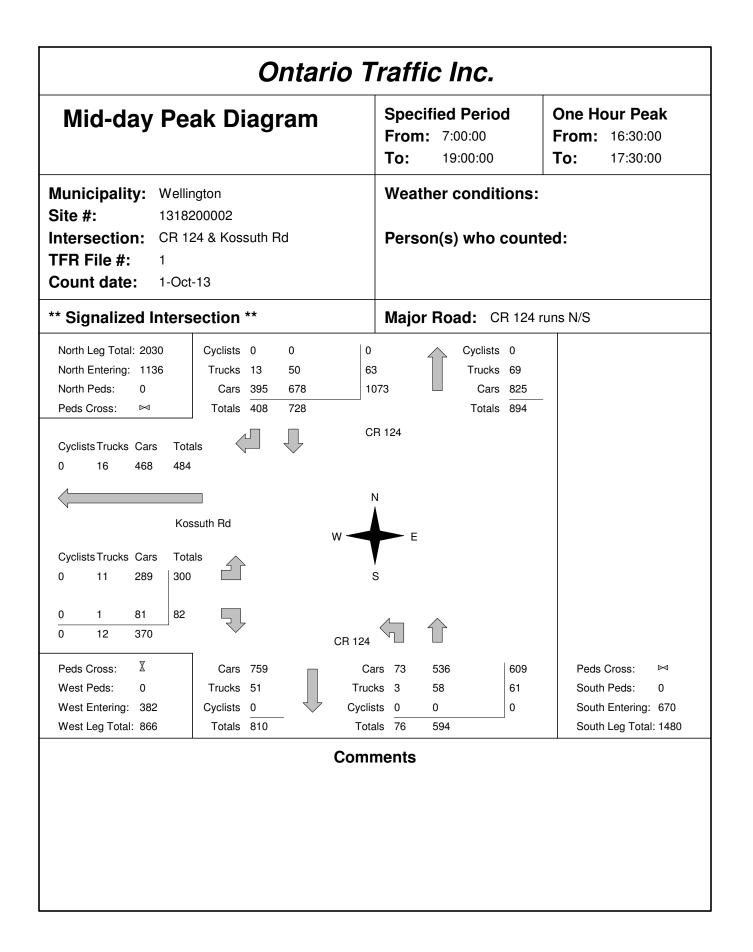
#### 12.5.3 Major Roadways

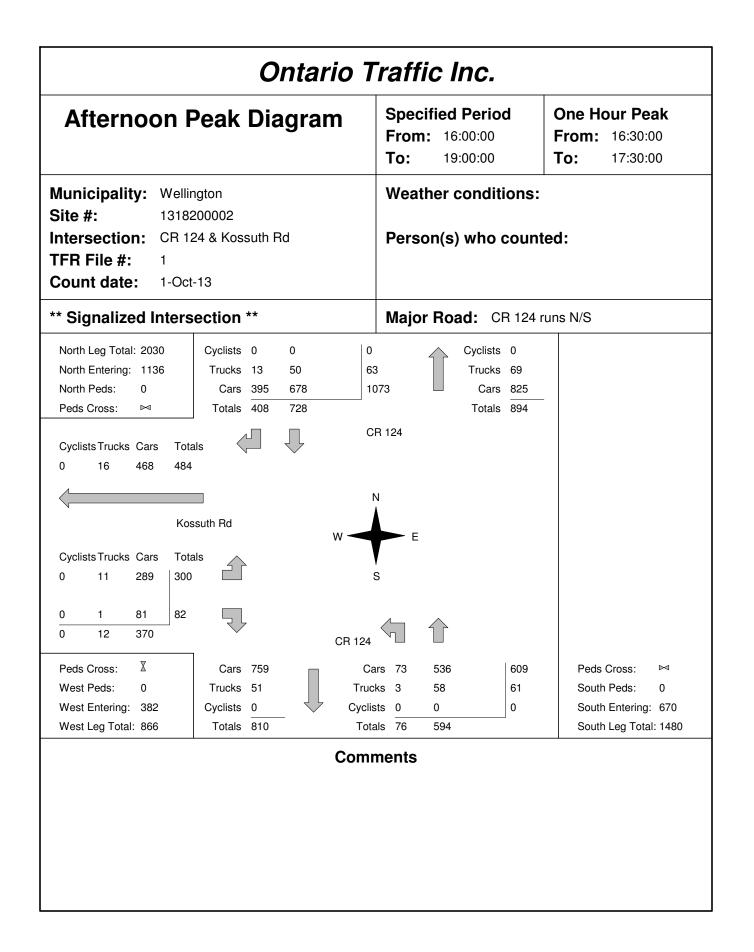
The provincial highway system and the county road system provide the major roadways in Wellington and they are shown

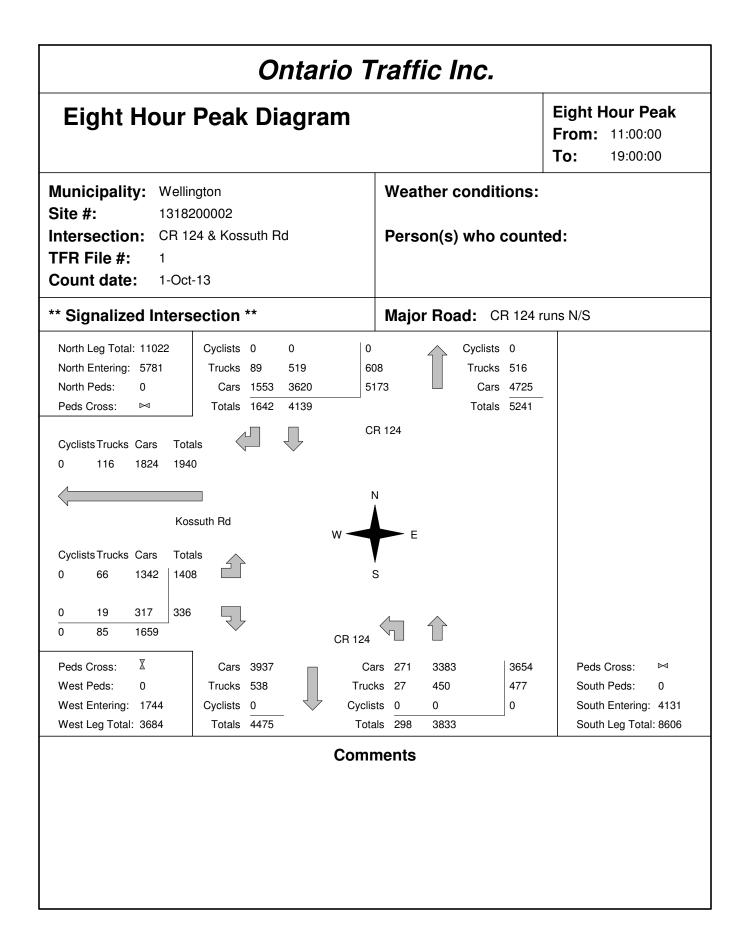
on Schedule A. The following policies apply to provincial and county roads:

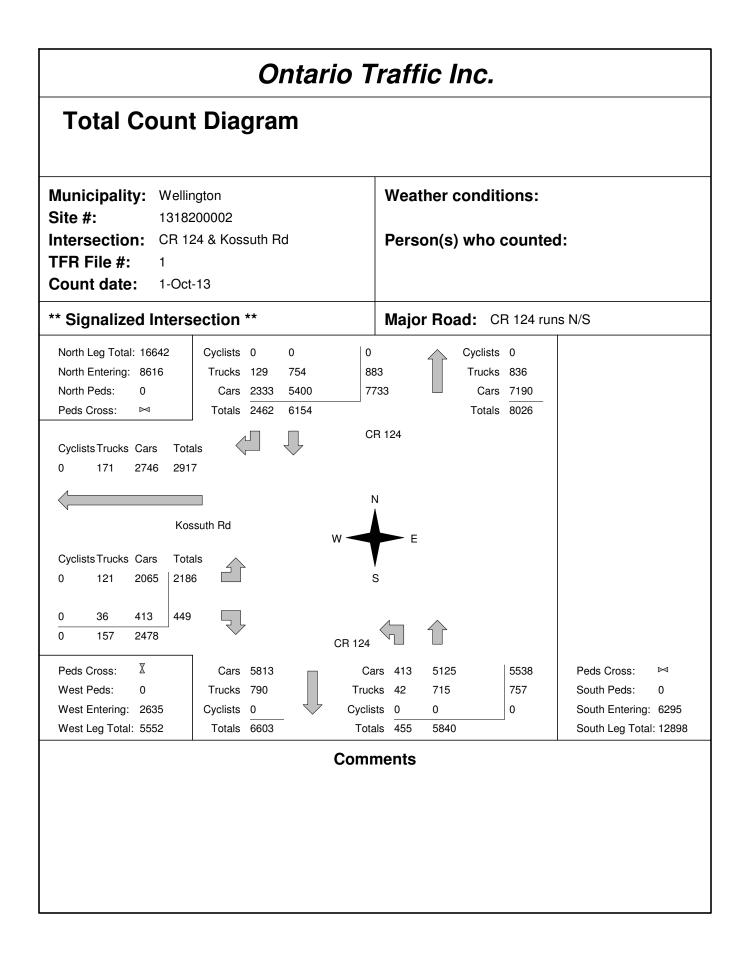
- a) major roadways are expected to provide and serve high volumes of traffic including truck traffic;
- b) major roadways are designed for safety, efficiency and convenience to move people and goods at reasonably high speeds;
- c) major roadways within urban centres should be served by sidewalks;
- access to major roadways should be restricted through the following means:
  - i) prohibition, where necessary;
  - ii) requiring access from lower volume roads, where possible;
- e) where access to major roadways is necessary, the following facilities may be required;
  - i) traffic signals
  - ii) turning lanes and tapers
  - iii) road widenings;
- f) roadway authorities may acquire land for road widening through acquisition programs or land dedication when planning approvals are sought;
- g) New major roadways require an amendment to this Plan and appropriate provincial environmental approvals. Changes in jurisdiction and minor realignment, widening or improvements do not require an amendment;


Transportation may identify the need for other information and materials through the pre-submission consultation meeting with the Region and/or applicable Area Municipality.


- 5.A.27 Where a proposed *development application* may compromise the <u>Environmental Assessment Act</u> requirements for a Proposed Regional Road Corridor as shown on Map 5b, a future Proposed Transit Corridor, Proposed *Provincial Highway,* or Proposed Provincial Transit Corridor not shown on Map 5b, the Region and/or Area Municipalities may, in consultation with the *Province,* whenever appropriate, consider the proposed *development application* to be premature until transportation planning and Environmental Assessment studies are completed.
- 5.A.28 Where a proposed *development application* is affected by road improvements that are subject to a Municipal Class Environmental Assessment, the Environmental Assessment will be completed to the extent required before approval of the *development application* by the Region or Area Municipality.
- 5.A.29 The following changes to the designations of roads as shown on Map 5b may be made without amendment to this Plan:
  - (a) to recognize the construction of a Planned Regional Road or *Provincial Highway*; and
  - (b) to implement the alignment of a Proposed Regional Road consistent with the corridor as shown on Map 5b.
- 5.A.30 All Regional Roads will be classified as truck routes unless prohibitions or time restrictions are imposed on particular sections based on the following:
  - the section of roadway is not designed or constructed for heavy truck traffic or long vehicles;
  - (b) there are critical height or weight restrictions on the section of roadway;
  - (c) the land uses adjacent to the roadway are primarily front-lotted urban residential and a suitable alternate route is available; or
  - (d) other considerations as determined by Regional Council.


Regional Road Design, Construction and Operation


5.A.31 The design, construction and operation of Regional Roads, and *development applications* or *site plans* that affect Regional Roads, will be in accordance with


**NOTE:** As of January 24, 2011, this Plan in its entirety, is currently under appeal before the Ontario Municipal Board (OMB). Before using this document, care should be taken to check the updated status of the appeal process on the Region of Waterloo's website. Page - 64 -











|                                                                                                                                                       |                                                                                        |                                                                                        |                                                                               | _                                                                                       |                                                                                        | o Traf                                                    | -                                                                                                                                                               | -                                                                                     |                                                                                       |                                 |                                                                                                |                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|                                                                                                                                                       |                                                                                        |                                                                                        |                                                                               | Traf                                                                                    |                                                                                        | ount S                                                    |                                                                                                                                                                 |                                                                                       |                                                                                       |                                 |                                                                                                |                                                                         |
| Intersection: (                                                                                                                                       |                                                                                        |                                                                                        |                                                                               |                                                                                         | Count D                                                                                | <sup>bate:</sup> 1-Oct-13                                 | Munic                                                                                                                                                           | <sup>vipality:</sup> We                                                               | -                                                                                     |                                 |                                                                                                |                                                                         |
|                                                                                                                                                       |                                                                                        |                                                                                        | ach Tot<br>rucks, & C                                                         |                                                                                         |                                                                                        |                                                           |                                                                                                                                                                 | Sout                                                                                  | h Appro                                                                               | pach Tot<br>rucks, & C          | als                                                                                            |                                                                         |
| Hour<br>Ending                                                                                                                                        | Left                                                                                   | Thru                                                                                   | Right                                                                         | Grand<br>Total                                                                          | Total<br>Peds                                                                          | North/South<br>Total<br>Approaches                        | Hour<br>Ending                                                                                                                                                  | Left                                                                                  | Thru                                                                                  | Right                           | Grand<br>Total                                                                                 | Total<br>Peds                                                           |
| 7:00:00<br>8:00:00<br>9:00:00<br>10:00:00<br>12:00:00<br>12:00:00<br>13:00:00<br>14:00:00<br>15:00:00<br>16:00:00<br>17:00:00<br>18:00:00<br>19:00:00 |                                                                                        | 1<br>657<br>545<br>441<br>371<br>409<br>418<br>414<br>423<br>611<br>682<br>704<br>478  | 0<br>283<br>146<br>111<br>141<br>106<br>96<br>157<br>248<br>353<br>367<br>174 | 1<br>937<br>828<br>587<br>482<br>550<br>524<br>510<br>580<br>859<br>1035<br>1071<br>652 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 864<br>946<br>1010<br>947<br>1130<br>1410<br>1666<br>1690 | 7:00:00<br>8:00:00<br>9:00:00<br>10:00:00<br>11:00:00<br>12:00:00<br>13:00:00<br>14:00:00<br>15:00:00<br>16:00:00<br>17:00:00<br>18:00:00<br>19:00:00           | 0<br>45<br>53<br>26<br>33<br>22<br>30<br>23<br>22<br>36<br>50<br>82<br>33             | 2<br>658<br>563<br>435<br>349<br>374<br>456<br>414<br>528<br>515<br>581<br>537<br>428 |                                 | 2<br>703<br>616<br>461<br>382<br>396<br>486<br>437<br>550<br>551<br>631<br>619<br>461          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| Totals:                                                                                                                                               | 0                                                                                      | 6154                                                                                   | 2462                                                                          | 8616                                                                                    | 0                                                                                      | 14911                                                     |                                                                                                                                                                 | 455                                                                                   | 5840                                                                                  | 0                               | 6295                                                                                           | 0                                                                       |
|                                                                                                                                                       |                                                                                        |                                                                                        | ach Tota<br>rucks, & C                                                        |                                                                                         |                                                                                        | East/West                                                 |                                                                                                                                                                 | Include                                                                               | <b>t Appro</b><br>es Cars. T                                                          | ach Tota<br>rucks, & C          | ais<br>vclists                                                                                 |                                                                         |
| Hour<br>Ending                                                                                                                                        | Left                                                                                   | Thru                                                                                   | Right                                                                         | Grand                                                                                   | Total<br>Peds                                                                          | Total                                                     | Hour                                                                                                                                                            | Left                                                                                  | Thru                                                                                  | Right                           | Grand                                                                                          | Total<br>Peds                                                           |
| 7:00:00<br>8:00:00<br>9:00:00<br>10:00:00<br>11:00:00<br>12:00:00<br>13:00:00<br>14:00:00<br>15:00:00<br>16:00:00<br>17:00:00<br>18:00:00<br>19:00:00 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0            | Total<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 135<br>117<br>132<br>161<br>191<br>229<br>361<br>337      | Ending<br>7:00:00<br>8:00:00<br>9:00:00<br>10:00:00<br>11:00:00<br>12:00:00<br>13:00:00<br>14:00:00<br>15:00:00<br>16:00:00<br>17:00:00<br>18:00:00<br>19:00:00 | 0<br>273<br>260<br>141<br>104<br>103<br>115<br>130<br>160<br>193<br>294<br>252<br>161 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0     | 0<br>19<br>38<br>25<br>31<br>14 | Total<br>0<br>292<br>298<br>166<br>135<br>117<br>132<br>161<br>191<br>229<br>361<br>337<br>216 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| Totals:<br>Hours En<br>Crossing                                                                                                                       |                                                                                        | 0<br>8:00<br>273                                                                       | 0<br><b>Calc</b><br>9:00<br>260                                               | 0<br><b>ulated V</b><br>10:00<br>141                                                    | 0<br><b>/alues f</b><br>15:00<br>160                                                   | 2635<br>or Traffic Cr                                     | ossing Ma<br>16:00<br>193                                                                                                                                       | 2186<br>ajor Stre<br>17:00<br>294                                                     | 0<br>eet<br>18:00<br>252                                                              | 19:00                           | 2635                                                                                           | 0                                                                       |

|              |                |          |                  |                  |                    |      | U    | nta    | <b>Ontario Traffic Inc</b> | Trai       | ffic     | lnc.           |      |      |                  |             |     |       |             |       |
|--------------|----------------|----------|------------------|------------------|--------------------|------|------|--------|----------------------------|------------|----------|----------------|------|------|------------------|-------------|-----|-------|-------------|-------|
| Count        | Count Date: 1- | 1-Oct-13 |                  | Site #:          | Site #: 1318200002 | )002 |      |        |                            |            |          |                |      |      |                  |             |     |       |             |       |
|              | 4              | asseng   | Passenger Cars - | - North Approach | pproach            |      |      | Trucks | cks - North                | h Approach | ach      |                |      | C    | Cyclists - North | th Approach | ach |       | Pedestrians | rians |
| Interval     | Left           |          | Thru             | n                | Right              | ht   | Left | æ      | Thru                       | ъ          | Right    | ht             | Left | Ŧ    | Thru             | 5           | Rig | Right | North (     | Cross |
| Time         | Cum            | Incr     | Cum              | Incr             | Cum                | Incr | Cum  | Incr   | Cum                        | Incr       | Cum      | Incr           | Cum  | Incr | Cum              | Incr        | Cum | Incr  | Cum         | Incr  |
| 7:00:00      |                | 0        | -                | -                | 0                  | 0    | 0    | 0      | 0                          | 0          | 0        | 0              | 0    | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 7:15:00      |                | 0        | 66               | 98               | 45                 | 45   | 0    | 0      | ъ                          | 5          | -        | -              | 0    | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 7:30:00      |                | 0        | 273              | 174              | 97                 | 52   | 0    | 0      | 13                         | 8          | ო        | N              | 0    | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 7:45:00      |                | 0        | 444              | 171              | 175                | 78   | 0    | 0      | 19                         | 9          | 2        | 4              | 0    | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 8:00:00      |                | 0        | 625              | 181              | 264                | 89   | 0    | 0      | 33                         | 14         | 16       | 6              | 0    | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 8:15:00      | 00             | 00       | 736              | 111              | 344                | 80   | 00   | 00     | 42                         | o f        | 19       | က <del>+</del> | 00   | 00   |                  | 00          | 00  | 00    | 00          |       |
| 8:45:00      |                | D C      | 1006             | 142              |                    | 72   | o c  |        | 3 12                       | 14         | 2.5      | - ന            |      |      |                  |             |     |       |             |       |
| 00:00:6      |                | 0        | 1104             | 86               |                    | 53   | 0    | 0      | 66                         | 22         |          | 0              |      | Ō    |                  | 0           | 0   | 0     | 0           | 0     |
| 9:15:00      |                | 0        | 1203             | 66               |                    | 34   | 0    | 0      | 117                        | 18         |          | N              |      | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 9:30:00      |                | 0        | 1307             | 104              |                    | 38   | 0    | 0      | 125                        | ω          |          | N              |      | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 9:45:00      |                | 0        | 1410             | 103              |                    | 33   | 0    | 0      | 142                        | 17         |          | Ω              |      | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 10:00:00     |                | 0 0      | 1483             | 73               |                    | 30   | 0    | 0 0    | 161                        | 19         |          |                |      | 0    |                  | 00          | 0 0 | 0     | 0 0         | 0 0   |
| 10:01:01     |                | 0 0      | 1541             | 200              | /0/                | 32   |      |        | 181                        | 02         | 02<br>72 |                |      |      |                  |             |     |       |             |       |
| 10:35:00     |                |          | 1701             | 3 12             |                    | 23   |      |        | 214                        | 1.0        | 88       | 0              |      | ō    |                  |             |     | 0     |             |       |
| 11:00:00     | 0              | 0        | 1780             | 29               |                    | 23   | 0    | 0      | 235                        | 21         | 40       | N              |      | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 11:15:00     | 0              | 0        | 1861             | 81               | 812                | 32   | 0    | 0      | 258                        | 23         | 44       | 4              |      | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 11:30:00     | 0              | 0        | 1937             | 76               |                    | 40   | 0    | 0      | 285                        | 27         | 46       | N              |      | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 11:45:00     | 0              | 0        | 2026             | 88               |                    | 38   | 0    | 0      | 308                        | 23         | 49       | e              |      | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 12:00:00     |                | 0 0      | 2104             | 78               |                    | 22   | 0 0  | 00     | 320                        | 1 12       | 49       | 0              |      | 00   |                  | 00          | 0 0 | 0     | 0 0         | 00    |
| 00:01:21     |                |          | 6612             | 6<br>6           | 930                | 8 5  |      |        | 33/                        | 24         | 00       |                |      |      |                  |             |     |       |             |       |
| 12:45:00     |                |          | 2373             | 9<br>83          |                    | 29   |      |        | 369<br>369                 | 10         | 54       | - m            |      |      |                  |             |     |       |             |       |
| 13:00:00     |                | 0        | 2455             | 82               | -                  | 27   | 0    | 0      | 387                        | 18         | 55       | -              |      | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 13:15:00     |                | 0        | 2540             | 85               | 1027               | 15   | 0    | 0      | 409                        | 22         | 57       | 2              |      | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 13:30:00     |                | 0        | 2624             | 84               | 1048               | 2    | 0    | 0      | 433                        | 24         | 58       | -              |      | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 13:45:00     | 0              |          | 2705             | 81               |                    | 25   | 0    | 0      | 453                        | 20         | 61       | m (            |      |      |                  | 0           | 0   | 0     | 0           | 0     |
| 14:00:00     |                | 00       | 2/89             | 84<br>77         | 1099               | 26   | 0 0  |        | 467                        | 14         | 64<br>57 | τ, τ.          |      | 00   |                  |             |     | 00    |             |       |
| 14:30:00     |                | C        | 2932             | 8 8              |                    | 98   | oc   |        | 210                        | 2.5        | 89       | - ന            |      |      |                  |             |     |       |             |       |
| 14:45:00     | 0              | 0        | 3018             | 86               |                    | 40   | 0    | 0      | 529                        | 19         | 71       | n<br>R         |      | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 15:00:00     |                | 0        | 3130             | 112              | 1246               | 40   | 0    | 0      | 549                        | 20         | 74       | S              |      | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 15:15:00     |                | 0        | 3230             | 100              | 1293               | 47   | 0    | 0      | 570                        | 21         | 80       | 9              |      | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 15:30:00     |                | 0        | 3390             | 160              |                    | 58   | 0    | 0      | 581                        | ÷          | 82       | 2              |      | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 15:45:00     |                | 0        | 3529             | 139              |                    | 62   | 0    | 0      | 597                        | 16         | 87       | 5              |      | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 16:00:00     | 0              | 0        | 3679             | 150              |                    | 65   | 0    | 0      | 611                        | 14         | 06       | e              |      | 0    |                  | 0           | 0   | 0     | 0           | 0     |
| 16:15:00     | 0              | 00       | 3814             | 135              |                    | 26   | 0 0  | 00     | 631                        | 20         | 100      | 10             |      | 0    |                  | 00          | 0 0 | 00    | 0 0         | 00    |
| 16:30:00     | 5              | 50       | 3980             | 166              | 1625               | 77   | 50   | 50     | 640                        | ז כ        | 102      | NC             |      | D C  |                  |             | 50  | 50    | 50          | 50    |
| >>->+-><br>- | >              | 2        | 1                | 3-               | 000-               | Ţ    | 2    | 2      | 200                        | <u>。</u>   | 5-       | 1              |      | `    |                  | "           | 2   | >     | 2           | >     |

|                  |               |           |            |                       |                    |       |    | Onte | Ontario Traffic Inc.    | Tra     | ffic              | Inc.  |        |      |                |                  |       |     |             |        |
|------------------|---------------|-----------|------------|-----------------------|--------------------|-------|----|------|-------------------------|---------|-------------------|-------|--------|------|----------------|------------------|-------|-----|-------------|--------|
| Count            | Count Date: 1 | 1-Oct-13  |            | Site #: 1318200002    | 13182              | 00002 | _  |      |                         |         |                   |       |        |      |                |                  |       | -   |             |        |
|                  | _             | Passenger | jer Cars - | Cars - North Approach | pproach            |       |    | Tru  | Trucks - North Approach | h Appro | ach               |       |        | Cyc  | Cyclists - Nor | - North Approach | ach   |     | Pedestrians | trians |
| Interval<br>Time | Left          | .         | Ę          | Thru                  | Ē                  | Right |    | Left | Thru                    | 5       | Riç               | Right | ٽ<br>۱ | Left | Thru           | n.               | Right | jht | North Cross | Cross  |
| 17:00:00         |               |           | 4302       | 167                   | <b>cum</b><br>1816 | 6 120 |    |      | 3                       |         | <b>Cum</b><br>105 |       |        |      |                |                  |       |     |             |        |
| 17:15:00         |               | 0         |            |                       |                    |       |    |      |                         |         |                   |       | 0      |      |                | 0                |       | 0   | 0           | , 0    |
| 17:30:00         |               | 0         |            |                       |                    |       |    |      |                         |         |                   |       | 0      |      |                | 0                |       | 0   | 0           | J      |
| 17:45:00         |               | 00        |            |                       |                    |       |    |      |                         |         |                   |       | 0      |      |                | 00               |       | 00  | 00          |        |
| 18:00:00         |               |           | 4907       | 115                   | 2220               |       |    |      | 728                     |         | 122               |       |        |      |                |                  |       |     |             |        |
| 18:30:00         |               | 0         |            |                       |                    |       |    |      |                         |         |                   |       | 0      |      |                | 0                |       | 0   | 0           | , 0    |
| 18:45:00         |               | 0         |            | -                     |                    |       |    |      |                         | 8       |                   |       | 0      |      |                | 0                |       | 0   | 0           | 0      |
| 19:00:00         | 00            | 0 0       | 5400       | 88 0                  | 2333               | 3 28  | 00 | 0    | 754                     | αc      | 129               | c     | 00     | 00   | 0 0            | 00               | 00    | 00  | 00          | 00     |
|                  |               |           |            |                       |                    |       |    |      |                         |         |                   |       |        |      |                |                  |       |     |             |        |
|                  |               |           |            |                       |                    |       |    |      |                         |         |                   |       |        |      |                |                  |       |     |             |        |

|             |           |           |      |                 |                    |          | U    | nta    | <b>Ontario</b> Trattic Inc | Trai     |             | יי<br>בי |      |         |                 |             |     |      |             |       |
|-------------|-----------|-----------|------|-----------------|--------------------|----------|------|--------|----------------------------|----------|-------------|----------|------|---------|-----------------|-------------|-----|------|-------------|-------|
| Count Date: |           | 1-Oct-13  |      | Site #:         | Site #: 1318200002 | 02       |      |        |                            |          |             |          |      |         |                 |             |     |      |             |       |
|             |           | Passenger | Cars | - East Approach | pproach            |          |      | Trucks | cks - East                 | Approach | ch          |          |      | С<br>ХС | Cyclists - East | st Approach | ach |      | Pedestrians | ians  |
| Interval    | Lei       | eft       | Thru | 2               | Right              |          | Left | L.     | Thru                       | 3        | Right       | ht       | Left | Į,      | Thru            | Þ           | Rig | ght  | East C      | Cross |
| Time        | Cum       | Incr      | Cum  | Incr            | Cum                | Incr     | Cum  | Incr   | Cum                        | Incr     | Cum         | Incr     | Cum  | Incr    | Cum             | Incr        | Cum | Incr | Cum         | Incr  |
| 7:00:00     | 0         | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 7:15:00     | 0         | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 7:30:00     | 0         | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 7:45:00     | 0         | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 8:00:00     | 0         | 00        |      |                 |                    | 0 0      | 0    | 00     | 0                          | 00       | 00          | 00       | 00   | 00      |                 | 00          | 0 0 | 0 0  | 0 0         | 00    |
| 00:01:8     |           |           |      |                 |                    | <u> </u> |      |        |                            |          |             |          |      |         |                 |             |     |      | - C         | ) C   |
| 8:45:00     |           | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 00:00:6     |           | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 9:15:00     |           | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 9:30:00     |           | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 9:45:00     |           | 0         |      |                 |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0 (  | 0           | 0 0   |
| 10:00:00    |           | 00        |      |                 |                    | 0 0      | 0 0  | 0 0    | 0 0                        | 0 0      | 0 0         | 00       | 00   | 00      |                 | 0 0         | 0 0 | 0 0  | 0 0         | 0 0   |
| 00:01:01    |           |           |      |                 |                    |          |      | - C    |                            |          |             |          |      |         |                 |             |     |      |             |       |
| 10:45:00    | 0         |           |      |                 |                    | 0        | 0    | 0      | 0                          | 0        |             |          | 0    |         |                 | 0           |     |      | 0           | 0     |
| 11:00:00    | 0         | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 11:15:00    | 0         | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 11:30:00    | 0         | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 11:45:00    | 0         | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 12:00:00    |           |           |      |                 |                    |          |      | 00     |                            |          |             |          |      |         |                 |             |     | 00   |             | 00    |
| 12:30:00    | c         |           |      |                 |                    | b C      | o    | o c    | c                          | o c      |             |          | C    |         |                 | o c         |     | b C  |             | D C   |
| 12:45:00    | 0         | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 13:00:00    | 0         | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 13:15:00    | 0         | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 13:30:00    | 00        | 00        |      |                 |                    | 00       | 0 0  | 00     | 0                          | 00       | 0           | 00       | 00   | 00      |                 |             | 0 0 | 00   | 0 0         | 00    |
| 13:43:00    |           |           |      |                 |                    |          |      |        |                            |          |             |          |      |         |                 |             |     |      |             |       |
| 14:15:00    | 0         | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 00    |
| 14:30:00    | 0         | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 14:45:00    | 0         | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 15:00:00    | 0         | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 15:15:00    | 0         | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 15:30:00    | 0         | 0         |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    | 0       |                 | 0           | 0   | 0    | 0           | 0     |
| 15:45:00    | 0         |           |      | 0               |                    | 0        | 0    | 0      | 0                          | 0        | 0           | 0        | 0    |         |                 | 0           | 0   | 0    | 0           | 0     |
| 16:00:00    | 0         | 00        |      |                 |                    | 00       | 0    | 00     | 0                          | 00       | 0           | 00       | 0    | 0       |                 | 00          | 0 0 | 00   | 0           | 00    |
| 16:15:00    | <u></u> с | 5 C       |      | 50              |                    | 50       |      | 50     | э с                        | 50       | -<br>-<br>- | 5 C      | э с  | ЪС      |                 | 50          | э с | 50   | -<br>-      | 50    |
| 16:45:00    | > C       |           |      | ) C             |                    | 20       | > c  | ) C    | > c                        | > C      | > C         | ) C      | > C  | > C     |                 | > C         | > c | 20   | > c         | > C   |
|             | '  <br>   |           |      |                 |                    | ,        | ,    | ,      | ,                          | _        | ,           | '        | '    |         |                 | 1           | ,   | ,    | ,           | ]     |

|          |               |           |          |                      |          |                    |     | <b>Dnta</b> | <b>Ontario Traffic Inc.</b> | Trai     | ffic | Inc.  |     |      |                          |          |       |      |             |        |
|----------|---------------|-----------|----------|----------------------|----------|--------------------|-----|-------------|-----------------------------|----------|------|-------|-----|------|--------------------------|----------|-------|------|-------------|--------|
| Count    | Count Date: 1 | 1-Oct-13  | e        | Site #:              | 1318     | Site #: 1318200002 |     |             |                             |          |      |       |     |      |                          |          |       |      |             |        |
|          |               | Passenger | ger Cars | Cars - East Approach | Approac  | ء                  |     | Tru         | Trucks - East Approach      | t Approa | tch  |       |     | Š    | Cyclists - East Approach | st Appro | ach   |      | Pedestrians | trians |
| Interval | Left          |           | F        | Thru                 |          | ligh               |     | Left        | Thru                        | ŗ        | Rig  | Right | ٦٣  | Left | Thru                     | 5        | Right | ht   | East Cross  | cross  |
| 17.00.00 | Cru           | Incr      | Cum      | Incr                 | Cum      | luc                | Cum | Incr        | Crm                         |          | Cum  | lncr  | Cum | Incr | Cum                      |          | Cam   | lncr | Crm         | lncr   |
| 17:15:00 |               | 00        |          |                      | 0 0      |                    |     |             | 0                           | 00       |      | 00    |     | 0    |                          | 00       | 0     | 0 0  | 00          | 00     |
| 17:30:00 |               | 0         |          |                      | 0        |                    |     |             | 0                           | 0        |      | 0     | 0   | 0    |                          | 0        | 0     | 0    | 0           | 0      |
| 17:45:00 |               | 00        |          |                      | 0.0      |                    |     |             | 0                           | 0 0      |      | 00    | 0 0 | 00   |                          | 00       | 0 0   | 0 0  | 0 0         | 0 0    |
| 18:00:00 |               |           |          |                      | 0 0      |                    |     |             |                             | 00       |      |       |     |      |                          |          |       | 00   |             | 00     |
| 18:30:00 |               | 0         |          |                      | 0        |                    |     |             | 0                           | 0        |      | 0     |     | 0    |                          | 0        | 0     | 00   | 0           | 0      |
| 18:45:00 |               | 0         |          |                      | 0        |                    |     |             | 0                           | 0        |      | 0     | 0   | 0    |                          | 0        | 0     | 0    | 0           | 0      |
| 19:00:00 | 0 0           | 00        | 00       |                      | 00       | 0 0                | 00  | 00          | 0 0                         | 00       | 0 0  | 00    | 0 0 | 00   | 0 0                      | 00       | 0 0   | 00   | 0 0         | 0 0    |
|          |               |           |          |                      | <b>b</b> |                    |     |             |                             |          |      |       |     |      |                          |          |       |      |             |        |
|          |               |           |          |                      |          |                    |     |             |                             |          |      |       |     |      |                          |          |       |      |             |        |

|             |          |                |                  |                |                    |          | 0          | nta    | <b>Ontario Traffic Inc</b> | rai      | TTIC  | nc.  |     |      |               |                |      |      |             |       |
|-------------|----------|----------------|------------------|----------------|--------------------|----------|------------|--------|----------------------------|----------|-------|------|-----|------|---------------|----------------|------|------|-------------|-------|
| Count Date: |          | 1-Oct-13       |                  | Site #:        | Site #: 1318200002 | _        |            |        |                            |          |       |      |     |      |               |                |      |      |             |       |
|             |          | Passen(        | Passenger Cars - | South Approach | pproach            |          |            | Trucks | - South                    | Approach | ach   |      |     | Š    | Cyclists - So | South Approach | oach |      | Pedestrians | rians |
| Interval    | Left     | ţ              | Thru             | ņ.             | Right              |          | Left       |        | Thru                       |          | Right | ht   | Ľ   | Left | Ţ             | Thru           | Riç  | ght  | South (     | Cross |
| Time        | Cum      | Incr           | Cum              | Incr           | Cum Incr           |          | Cum Ir     | Incr   | Cum                        | Incr     | Cum   | Incr | Cum | Incr | Cum           | Incr           | Cum  | Incr | Cum         | Incr  |
| 7:00:00     |          | 0              | -                | -              | 0                  | 0        | 0          | 0      | -                          | -        | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 7:15:00     |          | 7              | 101              | 100            | 0                  | 0        | 0          | 0      | 12                         | 11       | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 7:30:00     |          | က              | 250              | 149            | 0                  | 0        | ო          | ო      | 25                         | 13       | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 7:45:00     |          | 12             |                  | 194            | 0                  | 0        | വ          | N      | 40                         | 15       | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 8:00:00     |          | 18             |                  | 165            | 0                  | 0        | 2          | 0      | 51                         | Ξ        | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 8:15:00     | 55<br>68 | 15             | 757              | 148            | 00                 | 0 0      | ഗ          | 00     | 62<br>82                   | ÷ 5      | 00    | 00   | 00  |      | 00            |                | 00   | 00   |             | 00    |
| 8:45:00     |          | 5 <del>1</del> | -                | 106            |                    |          | ი <b>ლ</b> | - כ    | 70<br>96                   | 7 4      | 0 0   |      |     |      |               |                |      |      |             | o c   |
| 9:00:00     |          | 10             |                  | 106            |                    | 0        | 9 9        | 0      | 112                        | 16       | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 9:15:00     | -        | 6              | 1200             | 89             | 0                  | 0        | 9          | 0      | 133                        | 21       | 0     | 0    | 0   | 5    |               |                |      |      |             | 0     |
| 9:30:00     |          | ŋ              |                  | 88             | 0                  | 0        | 7          | -      | 152                        | 19       | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 9:45:00     |          | က              |                  | 8<br>8         | 0                  | 0        | ω          | -      | 173                        | 21       | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 10:00:00    | 115      | 9              |                  | 83             | 0                  | 0        | <b>б</b>   | -      | 194                        | 51       | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 10:15:00    | 124      | 6              |                  | 74             | 0                  | 0        | 10         | -      | 211                        | 17       | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 10:30:00    | 131      |                |                  | 55             | 0                  | 0        | <u>5</u>   | с (    | 223                        | 12       | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 10:45:00    | 134      | ro i           |                  | 12             | 0                  | 0        | 15         | N      | 247                        | 24       | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 11:00:00    | 142      | • 00           |                  | 11             | 0 0                | 0 0      | 15         | •      | 265                        | 100      | 0 0   | 00   | 0 0 |      |               |                |      |      |             | 00    |
| 00:01:11    | 140      | 4              |                  | 8<br>8         | - c                | 5 0      | <u>1</u>   | -      | 780                        | 2        |       |      |     |      |               |                |      |      |             | 0 0   |
| 11:30:00    | 147      | - œ            | 1974             | 75             |                    | 5 0      | 17         | - 0    | 304                        | = ~      |       |      |     |      |               |                |      |      |             |       |
| 12:00:00    | 160      | ~              |                  | 81             |                    | 0        | - 1        | ~      | 326                        | 22       |       |      |     |      |               |                |      |      |             |       |
| 12:15:00    | 165      | Ω.             |                  | 107            | 0                  | 0        | 19         | 0      | 342                        | 16       | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 12:30:00    | 174      | 6              |                  | 101            | 0                  | 0        | 21         | N      | 360                        | 18       | 0     | 0    | 0   | 5    |               |                |      |      |             | 0     |
| 12:45:00    |          | 80             |                  | 78             | 0                  | 0        | 22         | -      | 375                        | 15       | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 13:00:00    |          | 4              |                  | 106            | 0                  | 0        | 23         | -      | 390                        | 15       | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 13:15:00    | 191      | വ              |                  | 67             | 0 (                | 0 0      | 23         | 0 0    | 406                        | 16       | 0     | 00   | 0   |      |               |                |      |      |             | 0     |
| 13:30:00    | 108      | NĽ             | CU02             | 9<br>B         |                    | 5 0      | 07<br>27   | - V    | 423                        | 200      |       |      |     |      |               |                |      |      |             |       |
| 14-00-00    | 204      | o c            |                  | 20             | c                  | , c      | 280        | - ~    | 463                        | 200      |       |      |     |      |               |                |      |      |             |       |
| 14:15:00    | 211      | -              |                  | 112            | 0                  | 0        | 58<br>28   | 0      | 475                        | 12       | 0     | 0    |     |      |               |                |      |      |             | 0     |
| 14:30:00    | 213      | N              | 3033             | 133            | 0                  | 0        | 28         | 0      | 492                        | 17       | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 14:45:00    | 217      | 4              |                  | 124            | 0                  | 0        | 29         | -      | 509                        | 17       | 0     | 0    | 0   | 5    |               |                |      |      |             | 0     |
| 15:00:00    | 224      | 7              |                  | 94             | 0                  | 0        | 30         | -      | 528                        | 19       | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 15:15:00    | 229      | Ω              |                  | 111            | 0                  | 0        | 31         | -      | 542                        | 14       | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 15:30:00    | 237      | ω              |                  | 129            | 0                  | 0        | 34         | ო      | 559                        | 17       | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 15:45:00    | 250      | 13             |                  | 119            | 0                  | 0        | 34         | 0      | 576                        | 17       | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 16:00:00    | 256      | 9              |                  | 100            | 0                  | 0        | 34         | 0      | 584                        | ω        | 0     | 0    | 0   |      |               |                |      |      |             | 0     |
| 16:15:00    | 261      | ιΩ<br>T        |                  | 127            |                    | 00       | 34<br>24   | 0 1    | 599                        | 12       | 00    | 00   | 00  |      |               |                |      |      |             | 00    |
| 16:30:00    | 2/2      |                | 8065             | 121            |                    | <u> </u> | 200        |        | 610<br>624                 |          | 2 0   | 20   | 20  |      |               |                |      |      |             | 50    |
| >>>>+->-    | 2        | :              |                  | 3              | ,                  | ,        | 3          | ,      | -1-)<br>-                  | [        | ,     | `]   | ,   |      |               |                |      |      |             |       |

|          |               |            |                                 |         |                    |            | O    | Inta | <b>Ontario Traffic Inc.</b> | Trai    | ffic  | lnc. |          |      |                           |           |       |      |             |       |
|----------|---------------|------------|---------------------------------|---------|--------------------|------------|------|------|-----------------------------|---------|-------|------|----------|------|---------------------------|-----------|-------|------|-------------|-------|
| Count    | Count Date: 1 | 1-Oct-13   |                                 | Site #: | Site #: 1318200002 | <b>302</b> |      |      |                             |         |       |      |          |      |                           |           |       |      |             |       |
|          |               | Passeng    | Passenger Cars - South Approach | South A | pproach            |            |      | Truc | Trucks - South Approach     | h Appro | ach   |      |          | Cycl | Cyclists - South Approach | ith Appro | ach   |      | Pedestrians | rians |
| Interval | Left          | Ŧ          | Thru                            | 2       | Right              | Ţ          | Left | _بر  | Thru                        | ъ       | Right | ht   | <b>ٽ</b> | Left | Thru                      | 2         | Right | Ŧ    | South Cross | Cross |
| III      | อิ            | Incr       | ы                               | Incr    | Cum                | Incr       | Cum  | Incr | Cum                         | Incr    | Cum   | Incr | Cum      | Incr | Cum                       | Incr      | Cum   | Incr | Cum         | Incr  |
| 17:00:00 |               | 16         |                                 | 144     |                    | 00         | 35   | 0    | 637                         | 13      |       | 00   | 00       | 00   | 00                        | 00        | 0     | 00   | 0           | 0 0   |
| 17:20:00 | 325           | 20         | 4360                            | 122     |                    | 0 0        | 36   | - c  | 653<br>668                  | 16      |       |      |          |      |                           |           |       | 00   |             | 00    |
| 17:45:00 |               | 16         |                                 | 117     |                    | 00         | 8 4  | 1 01 | 674                         | 0 0     |       | 00   |          | 00   |                           | 00        | 0     | 0    | 0           | 0     |
| 18:00:00 |               | 20         |                                 | 114     |                    | 0          | 41   | -    | 687                         | 13      |       | 0    | 0        | 0    | 0                         | 0         | 0     | 0    | 0           | 0     |
| 18:15:00 |               | <b>б</b> с | 4839                            |         | 00                 | 0 0        | 4    | 0 1  | 695                         | 1 00    | 00    | 00   | 00       | 00   | 00                        | 00        | 00    | 00   | 00          | 00    |
| 18:45:00 | 404           | <u>ی</u> ہ | 4947<br>5038                    |         |                    |            | 404  | - C  | 711                         | - 6     |       |      |          |      |                           |           |       |      | o c         |       |
| 19:00:00 |               | 6          | 5125                            | 87      |                    | 0          | 42   | 0    | 715                         | 4       |       | 0    | 0        | 0    | 0                         | 0         | 0     | 0    | 0           | 0     |
|          |               |            |                                 |         |                    |            |      |      |                             |         |       |      |          |      |                           |           |       |      |             |       |
|          |               |            |                                 |         |                    |            |      |      |                             |         |       |      |          |      |                           |           |       |      |             |       |
|          |               |            |                                 |         |                    |            |      |      |                             |         |       |      |          |      |                           |           |       |      |             |       |
|          |               |            |                                 |         |                    |            |      |      |                             |         |       |      |          |      |                           |           |       |      |             |       |

|             |      |             |      |         |            |      | U        | nta        | <b>Ontario Traffic Inc</b> | Trai       | ffic           | Inc. |     |      |                 |             |     |      |             |            |
|-------------|------|-------------|------|---------|------------|------|----------|------------|----------------------------|------------|----------------|------|-----|------|-----------------|-------------|-----|------|-------------|------------|
| Count Date: |      | 1-Oct-13    |      | Site #: | 1318200002 | )02  |          |            |                            |            |                |      |     |      |                 |             |     |      |             |            |
|             |      | Passenger   | Cars | - West  | Approach   |      |          | Trucks     | cks - West                 | t Approach | tch            |      |     | Cyc  | Cyclists - West | st Approach | ach |      | Pedestrians | rians      |
| Interval    | Left | ų           | ЧТ   | Thru    | Right      | ÷    | Left     | Ŧ          | Thru                       | 5          | Right          | ht   | Ĩ   | eft  | Thru            | ņ           | Rig | ght  | West C      | Cross      |
| Time        | Cum  | Incr        | Cum  | Incr    | Cum        | Incr | Cum      | Incr       | Cum                        | Incr       | Cum            | Incr | Cum | Incr | Cum             | Incr        | Cum | Incr | Cum         | Incr       |
| 7:00:00     |      | 0           |      | 0       |            | 0    | 0        | 0          | 0                          | 0          | 0              | 0    | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 7:15:00     |      | 38          |      | 0       |            | 0    | 4        | 4          | 0                          | 0          | 0              | 0    | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 7:30:00     |      | 56          |      | 0       | N          | N    | 8        | 4          | 0                          | 0          | -              | -    | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 7:45:00     |      | 78          |      | 0       |            | 9    | 16       | ω          | 0                          | 0          | N              | -    | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 8:00:00     | 252  | 80          |      | 00      | 16         | °° , | 21       | <b>-</b> Ω | 00                         | 00         | თ <del>-</del> | - ·  | 00  |      |                 | 00          | 0 0 | 00   | 0 0         | 00         |
| 8:30:00     |      | 70<br>67    |      |         |            | - 9  | 27       | 4 01       | 0 0                        | 00         | 4 4            | - 0  |     |      |                 |             | 00  |      |             |            |
| 8:45:00     |      | 69          |      | 0       |            | 2    | 29       |            | 0                          | 0          | 2              | 0 M  | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 00:00:6     |      | 44          |      | 0       |            | ω    | 31       | N          | 0                          | 0          | <b>б</b>       | N    | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 9:15:00     |      | 41          |      | 0       |            | 9    | 35       | 4          | 0                          | 0          | 10             | -    | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 9:30:00     |      | 27          |      | 00      |            |      | 36       | - 0        | 00                         | 00         | 99             | 00   | 00  |      |                 | 00          | 0 0 | 0 0  | 0 0         | 00         |
| 9:45:00     | 603  | 33          |      |         |            | N C  | 30       | ⊃ç         |                            |            |                |      |     |      |                 |             |     |      |             |            |
| 10.15.00    |      | 26          |      |         | 80         | ົ້   | 49<br>46 |            |                            | D C        | 2 =            | - C  |     |      |                 |             |     | D C  | 0 0         |            |
| 10:30:00    |      | 30          |      | 0       |            | 0    | 48       | 0          | 0                          | 0          | ₽<br>24        |      | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 10:45:00    | 696  | 12          |      | 0       |            | 7    | 51       | e          | 0                          | 0          | 15             | e    | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 11:00:00    | 723  | 27          |      | 0       |            | က    | 55       | 4          | 0                          | 0          | 17             | 0    | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 11:15:00    | 747  | 24          |      | 0       |            | -    | 57       | N          | 0                          | 0          | 17             | 0    | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 11:30:00    | 774  | 27          |      | 0       |            | 9    | 60       | ς<br>Ω     | 0                          | 0          | 17             | 0    | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 11:45:00    | 794  | 20          |      | 0       |            | ~ ~  | 64       | 4 (        | 0                          | 0          | 17             | 0    | 0   |      |                 | 0           | 0   | 0 0  | 0           | 0 0        |
| 12:00:00    | 814  | 20          |      |         | 109        | 4 -  | 67       | <b>ю</b> т |                            |            | 0<br>1<br>0    |      |     |      |                 |             |     | 00   |             |            |
| 12:30:00    |      | 31          |      |         |            |      | 22       | - 4        |                            |            | 6              | - 0  |     |      |                 |             |     |      |             |            |
| 12:45:00    |      | 25          |      | 0       |            | Ω I  | 73       | -          | 0                          | 0          | 19             | 0    | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 13:00:00    |      | 28          |      | 0       |            | 2    | 74       | -          | 0                          | 0          | 19             | 0    | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 13:15:00    |      | 29          |      | 0       |            | 9    | 22       | ς<br>Γ     | 0                          | 0          | 19             | 0    | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 13:30:00    | 990  | 39          |      |         | 139        | ນ ແ  | 6/       | 21 0       |                            | 00         | 12 6           | CV C |     |      |                 |             |     | 0 0  | 0 0         |            |
| 14-00-00    | 1041 | 27          |      |         |            | o c  | 3.5      | о ст.      | o                          | C          | 24             | 1 -  |     |      |                 |             |     |      | 0 0         |            |
| 14:15:00    | 1075 |             |      | 0       |            | 7    | 86       |            | 0                          | 0          | 24             | 0    | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 14:30:00    | 1100 |             |      | 0       |            | 8    | 86       | 0          | 0                          | 0          | 24             | 0    | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 14:45:00    | 1137 | 37          |      | 0       |            | 10   | 88       | N          | 0                          | 0          | 24             | 0    | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 15:00:00    | 1188 | 51          |      | 0       |            | 2    | 98       | 9          | 0                          | 0          | 25             | -    | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 15:15:00    |      | 34          |      | 0       |            | Q    | 86       | 0          | 0                          | 0          | 25             | 0    | 0   |      |                 | 0           | 0   | 0    | 0           | 0          |
| 15:30:00    |      | 52          |      | 0       |            | ~ !  | 101      | m (        | 0                          | 0          | 25             | 0    | 0   |      |                 | 0           | 0   | 0 0  | 0           | 0 0        |
| 15:45:00    | -    | 58          |      |         |            | 0    | 101      | 00         |                            | 00         | 20             |      |     |      |                 | 00          | 0 0 | 0 0  | 0 0         | 00         |
| 16:00:00    | 13/6 | 4<br>4<br>4 |      |         | 612<br>000 |      | 103      | N T        | 5                          |            | 200            | - c  |     |      |                 |             | э с | 5 0  | <b>с</b> с  |            |
| 16:30:00    | 1496 | 59          |      |         |            |      | 106      | - ~        |                            |            | 67             | V C  |     |      |                 |             |     |      |             |            |
| 16:45:00    | 1570 | 74          |      | , 0     |            | 19   | 111      | Ω.         | » 0                        | <u>, 0</u> | 50             | ,0   | ,0  |      |                 | 0           | , O | ,0   | , o         | <u>, 0</u> |
|             |      |             |      |         |            | 1    |          | 1          |                            | 1          |                | ]    |     |      |                 | ]           |     |      |             | ]          |

|                  |      |          |          |          |                                |              |            | Dnta | Ontario Traffic Inc.   | Trai     | ffic  | lnc.     |        |      |               |                 |       |          |             |       |
|------------------|------|----------|----------|----------|--------------------------------|--------------|------------|------|------------------------|----------|-------|----------|--------|------|---------------|-----------------|-------|----------|-------------|-------|
| Count Date:      |      | 1-Oct-13 |          | Site #:  | Site #: 1318200002             | 00002        |            |      |                        |          |       |          |        |      |               |                 |       |          |             |       |
|                  | _    | Passen   | jer Cars | - West A | Passenger Cars - West Approach |              |            | Tru  | Trucks - West Approach | t Appros | tch   |          |        | Cyc  | Cyclists - We | - West Approach | ach   |          | Pedestrians | rians |
| Interval<br>Time | Left |          | ۲<br>۱   | Thru     |                                | ligh         | <u>ا</u> د | Left | Thru                   | 2        | Right | -<br>Ipt | ן<br>נ | Left | Thru          | 2               | Right | <u>t</u> | West Cross  | Cross |
| 17:00:00         | 1661 | 91<br>91 |          |          | 3                              |              | 3          |      |                        |          | 29    |          |        |      |               |                 |       |          |             |       |
| 17:15:00         |      | 64       |          |          |                                |              | 115        |      |                        | 0        | 29    | 0        | 0      |      |               | 0               |       | 0        | 0           | 0     |
| 17:30:00         |      | 60       |          |          |                                |              |            |      |                        | 0        | 30    | -        | 0      |      |               | 0               |       | 0        | 0           | 0     |
| 17:45:00         |      | 58       |          |          | 0 347                          |              |            |      |                        | 0        | 31    | -        | 0      |      |               | 0               |       | 0        | 0           | 0     |
| 18:00:00         | 1905 | 62       |          |          |                                |              |            |      |                        | 00       | 33    | 0 0      | 00     |      |               | 00              |       | 00       | 00          | 00    |
| 18:30:00         | 1947 | 443      | 00       |          | 0 389                          | 9 13<br>9 13 |            | 0 0  | 00                     | 00       | 35    | 0 0      | 00     | 00   |               | 00              | 00    | 00       | 00          | 00    |
| 18:45:00         | 2030 | 40       |          |          |                                |              |            |      |                        | 0        | 36    | -        | 0      |      |               | 0               |       | 0        | 0           | 0     |
| 19:00:00         | 2065 | 35       |          |          |                                |              |            |      |                        | 0        | 36    | 0        | 0      |      |               | 0               |       | 0        | 0           | 0     |
|                  |      |          |          |          |                                |              |            |      |                        |          |       |          |        |      |               |                 |       |          |             |       |
|                  |      |          |          |          |                                |              |            |      |                        |          |       |          |        |      |               |                 |       |          |             |       |
|                  |      |          |          |          |                                |              |            |      |                        |          |       |          |        |      |               |                 |       |          |             |       |
|                  |      |          |          |          |                                |              |            |      |                        |          |       |          |        |      |               |                 |       |          |             |       |



Ministry of Transportation

Traffic Office

Highway Standards Branch

**Traffic Volumes** Provincial Highways

1988-2010

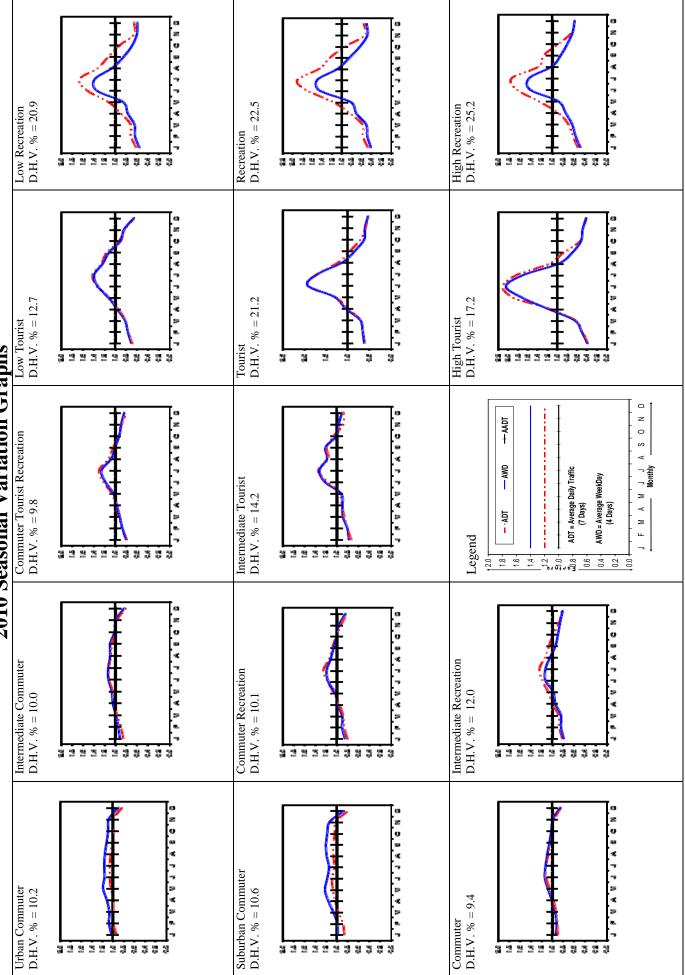
King's Highways / Secondary Highways / Tertiary Roads

Ministry Contact: Traffic Office (905)-704-2960

Abstract:

This annual publication contains averaged traffic volume information and accident rate information for each of the sections of highway under MTO jurisdiction.

Key Words:


Annual Average Daily Traffic volume (AADT), Summer Average Daily Traffic volume (SADT), Summer Average Weekday Traffic volume (SAWDT), Winter Average Daily Traffic volume (WADT), Accident Rate (AR)

| Distance (KM)                                  |                          |                                                                                                                                 | second three, recreational travel; this sub-grouping is distinguished                                                                                                    |
|------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The length of the sec                          | tion in kilc             | The length of the section in kilometres reported to one decimal place.                                                          |                                                                                                                                                                          |
| )                                              |                          |                                                                                                                                 | There are two additional codes in the pattern type column. "UNC"                                                                                                         |
| Pattern Type                                   |                          |                                                                                                                                 | indicates that the AADT was calculated using adjustment factors                                                                                                          |
|                                                |                          |                                                                                                                                 | from an unclassified (i.e. new) permanent counting station. "NEW"                                                                                                        |
| One of 14 pattern types that represent the sea | bes that ru              | epresent the seasonal variation of the                                                                                          | indicates that this is a new volume section and there is insufficient                                                                                                    |
| traffic flow on the section indicated.         | ection inc<br>as been ir | traffic flow on the section indicated. A graphical presentation of these pattern types has been included on the following page. | data to assign a pattern type.                                                                                                                                           |
|                                                |                          |                                                                                                                                 | AADT                                                                                                                                                                     |
| The 14 pattern types                           | represen                 | t the traffic flow variation on the whole                                                                                       |                                                                                                                                                                          |
| network. They includ                           | е:                       | network. They include:                                                                                                          | Annual Average Daily Traffic; defined as the average twenty four hour two way traffic for the period January 1 <sup>st</sup> to December 31 <sup>st</sup>                |
| Variation Types                                |                          |                                                                                                                                 |                                                                                                                                                                          |
|                                                |                          |                                                                                                                                 | SADT                                                                                                                                                                     |
|                                                | S                        | urban commuter                                                                                                                  |                                                                                                                                                                          |
| LOW                                            | SC                       | suburban commuter                                                                                                               | Summer Average Daily Traffic; defined as the average twenty four                                                                                                         |
|                                                | ပ                        | commuter                                                                                                                        | hour, two way traffic for the period July 1st to August 31st including                                                                                                   |
|                                                |                          |                                                                                                                                 | weekends.                                                                                                                                                                |
|                                                | <u>ں</u>                 | intermediate commuter                                                                                                           |                                                                                                                                                                          |
|                                                | SS                       | commuter recreation                                                                                                             | SAWDT                                                                                                                                                                    |
| INTER                                          | ≌                        | intermediate recreation                                                                                                         |                                                                                                                                                                          |
|                                                | CTR                      | commuter tourist recreation                                                                                                     | Summer Average Weekday Traffic; defined as the average twenty                                                                                                            |
|                                                | F                        | intermediate tourist                                                                                                            | four hour, two way traffic for the period July 1 <sup>st</sup> to August 31 <sup>st</sup> ,                                                                              |
|                                                |                          |                                                                                                                                 | excluding weekends.                                                                                                                                                      |
|                                                | 5                        | low tourist                                                                                                                     |                                                                                                                                                                          |
|                                                | ⊢                        | tourist                                                                                                                         | WADT                                                                                                                                                                     |
| HOH                                            | 노                        | high tourist                                                                                                                    |                                                                                                                                                                          |
|                                                | ۲<br>۲                   | low recreation                                                                                                                  | Winter Average Daily Traffic; defined as the average twenty four                                                                                                         |
|                                                | хĦ                       | recreation<br>high recreation                                                                                                   | hour, two way traffic for the period January 1 <sup></sup> to March 31 <sup></sup> ; plus<br>December 1 <sup>st</sup> to December 31 <sup>st</sup> , including weekends. |
|                                                |                          | )                                                                                                                               |                                                                                                                                                                          |

The first three are generally referred to as Low Variation Curves (or commuter travel); the next five as Intermediate Variation Curves (a blend of all types of traffic); and the last six as High Variation Curves. For the last group, the first three represent tourist travel and the

NEW new volume section

**UNC** unclassified



**2010 Seasonal Variation Graphs** 

I. >

|         |                                                   |      |      | Patt                  |                  | 14.0             |                    |                  |                |
|---------|---------------------------------------------------|------|------|-----------------------|------------------|------------------|--------------------|------------------|----------------|
| підпмау |                                                   | UIST | rear | Type                  | AAUI             | SAUI             | JAWDI              | WAUI             | AR             |
| 7       | 71 WOOLWICH GUELPH TOWNLINE                       | 6.0  | 1988 | SC<br>SC              | 15,250<br>15,250 | 16,400<br>17 400 | 17,900             | 13,700           | 1.0            |
|         |                                                   |      | 2000 | ى ر                   | 15,700           | 10,400           |                    | 14,100           | ۲ C            |
|         |                                                   |      | 1001 | ى ر                   | 17,050           | 10,200           | 18,000             | 14,700<br>15,500 |                |
|         |                                                   |      | 1001 | ູ່                    | 15,000           | 16,700           | 18,200             | 14 400           |                |
|         |                                                   |      | 1002 | ງເ<br>ກິທ             | 15,000           | 17 500           | 10,200             | 14,400           | 0.0            |
|         |                                                   |      | 1994 |                       | 17,000           | 17 700           | 19,600             | 15,600           | - C            |
|         |                                                   |      | 1995 |                       | 17 900           | 18,600           | 20.400             | 16,600           |                |
|         |                                                   |      | 1996 | 2<br>2<br>2           | 18,900           | 20,000           | 22,100             | 18,000           |                |
|         |                                                   |      | 1007 |                       | 10,200           | 21,000           | 23,200             | 17 600           | $\frac{1}{2}$  |
|         |                                                   |      | 1000 |                       |                  | 22 200           | 24 500             | 18,600           |                |
|         |                                                   |      |      |                       | 20,300<br>22,000 | 22,400           | 25,800             | 10,000           |                |
|         |                                                   |      |      |                       | 21 000           | 20,400           | 25,000             | 10,000           | - <del>.</del> |
|         |                                                   |      |      |                       | 21,000           | 20,400           | 25,500             | 10,200           | - ,            |
|         |                                                   |      |      |                       | Z1,300           | 20,400           |                    | 19,200           | - 1<br>- (     |
|         |                                                   |      |      |                       | 21,900           | 23,200           | 25,600             | 19,300           | ) / C          |
|         |                                                   |      | 2002 | ) (<br>מימ            | Z1,200           | 22,000           | 20,200             | 10,800           | - (<br>1       |
|         |                                                   |      | 2004 | S<br>S<br>S           | 21,300           | 22,500           | 24,900             | 18,800           | 0.7            |
|         |                                                   | -    | 2005 | S                     | 21,600           | 22,900           | 25,200             | 19,000           | 0.9            |
|         |                                                   |      | 2006 | SC                    | 21,900           | 23,200           | 25,600             | 19,300           | 0.9            |
|         |                                                   |      | 2007 | SC                    | 22,200           | 23,500           | 25,700             | 19,500           | 1.0            |
|         |                                                   |      | 2008 | SC                    | 22,500           | 23,600           | 22,300             | 19,800           | 0.7            |
|         |                                                   |      | 2009 | SC                    | 22,500           | 23,800           | 26,300             | 19,800           | 0.6            |
|         |                                                   |      | 2010 | SC                    | 23,300           | 24,600           | 27,300             | 20,500           | 0.7            |
| 7       | WOOLWICH ST E JCT -START OF NA KITCHENER/WATERLOO | 5.5  | T    | ┢                     |                  |                  |                    |                  |                |
| 7       | HWY 85 OP-CONESTOGA PKWY-END OF NA                | 1.5  | 1988 | nc                    | 61,000           | 64,000           | 68,900             | 57,300           | 1.6            |
|         |                                                   |      | 1989 | С<br>О                | 62,000           | 65,000           | 70,000             | 58,800           | 1.6            |
|         |                                                   |      | 1990 | Ч                     | 66,250           | 70,800           | 76,800             | 62,900           |                |
|         |                                                   |      | 1991 | С<br>П                | 68,900           | 73,000           | 79,200             | 66,800           | 0.9            |
|         |                                                   |      | 1992 | SC                    | 66,900           | 70,200           | 78,200             | 61,500           | 1.             |
|         |                                                   |      | 1993 | SC                    | 67,550           | 74,900           | 82,400             | 60,100           | 0.9            |
|         |                                                   |      | 1994 | SC                    | 73,700           | 76,600           | 84,800             | 67,800           | 0.9            |
|         |                                                   |      | 1995 | SC                    | 76,300           | 80,100           | 88,500             | 67,400           | 1.0            |
|         |                                                   |      | 1996 | SC                    | 78,800           | 83,800           | 92,400             | 70,900           | 0.7            |
|         |                                                   |      | 1997 | ပ္ပ                   | 81,300           | 86,400           | 95,300             | 72,400           | 0.9            |
|         |                                                   |      | 1998 | SC                    | 83,800           | 89,100           | 98,200             | 74,600           | 0.4            |
|         |                                                   |      | 1999 | SC                    | 86,300           |                  |                    | 76,800           | 0.5            |
|         |                                                   |      | 2000 | SC                    | 88,800           |                  |                    | 78,400           | 0.4            |
|         |                                                   |      | 2001 |                       | 91,300           |                  |                    | 80,300           | 0.5            |
|         |                                                   |      | 2002 |                       | 93,800           |                  | 109,800            | 82,700           | 0.8            |
|         |                                                   |      | 2003 |                       | 95,800           | 100,600          | 112,100            | 84,300           | 0.6            |
|         |                                                   |      | 2004 |                       |                  | 102,800          | 113,600            | 86,200           | 0.6            |
|         |                                                   |      | 2005 |                       | 99,000           | 104,800          | 115,600            | 87,100           | 0.3            |
|         |                                                   | -    | 2006 | ີ<br>ເ<br>ນ<br>ເ<br>ນ | 100,600 106,400  | 106,400          | 117,600<br>118,200 | 88,700<br>80 000 | 0.0<br>7       |
| _       |                                                   |      | 7001 |                       | UZ,2UU           |                  | 10,400             | 00,000           | †<br>5         |
|         |                                                   |      |      |                       |                  |                  | Ċ                  |                  | 000            |

1988-2010 Traffic Volumes Publication

Page 136 of 992

\_\_\_\_\_

Configuration

|                                |   |   |   | Con | trolle | er Se | quence | Pric   | rity |        |    |        |
|--------------------------------|---|---|---|-----|--------|-------|--------|--------|------|--------|----|--------|
|                                | 1 | 2 | 3 | 4   | 5      | 6     | 7      | 8      | 9    | 10     | 11 | 12     |
| Ring 1 Phases<br>Ring 2 Phases |   |   |   |     |        |       |        | 0<br>0 |      | 0<br>0 |    | 0<br>0 |
|                                |   |   |   |     |        |       | Phase  |        |      |        |    |        |
|                                | 1 | 2 | 3 | 4   | 5      | 6     | 7      | 8      | 9    | 10     | 11 | 12     |
| In Use                         |   |   |   |     |        |       |        |        | •    | •      |    |        |
| Exclusive Ped<br>Direction     | • | • | • | •   | •      | •     | •      | •      | •    | ·      | •  | •      |

|             |   |   | Ove | rlap |   |
|-------------|---|---|-----|------|---|
|             |   | A | В   | С    | D |
| Direction . | • |   |     |      |   |

## Load Switch Channel/Driver Group Assign (Info Only):

| Load    |  |   | Signal |       |
|---------|--|---|--------|-------|
| Switch  |  |   | Driver | Group |
| (MMU)   |  |   | Phase/ |       |
| Channel |  |   | Ovlap  | Ped   |
| 1       |  | • | 1      |       |
| 2       |  | • | 2      |       |
| 3       |  |   | 3      | •     |
| 4.      |  | • | 4      |       |
| 5       |  |   | 5      |       |
| 6       |  |   | 6      | •     |
| 7       |  |   | 7      |       |
| 8       |  |   | 8      |       |
| 9       |  |   | 2      | Х     |
| 10      |  |   | 4      | Х     |
| 11      |  |   | 6      | Х     |
| 12      |  |   | 8      | Х     |
| 13      |  |   | A      | •     |
| 14      |  |   | В      |       |
| 15      |  |   | С      | •     |
| 16      |  | • | D      |       |
|         |  |   |        |       |

Wellington County 1-12 124 & Kossuth 11/4/2013 15:34 Configuration Continued \_\_\_\_\_ Enable BIU: 1 2 3 4 5 6 7 8 Terminal/Facilities. . . . . . . . . . . . . Detector Rack. . . . . . . . . . . . . . . . Type 2 Runs as Type 1. . . MMU Disable. . . . . . X Diagnostic Enable. . . . . Peer-Peer Comm Enable. . . 1 2 3 4 5 6 7 8 9 10 Port 2: Port 2 Protocol . . . . . . . Terminal Port 2 Enable . . . . . . . . YES AB3418 Address. . . . . . . 0 AB3418 Group Address. . . . 0 AB3418 Response Delay . . . . 0 AB3418 Single Flag Enable . . . NO AB3418 Drop-Out Time. . . . 0 AB3418 TOD SF Select. . . . 0 Data, Parity, Stop. . . . . . 8, 0, 1 Port 3: Port 3 Protocol . . . . . . . . Telemetry Port 3 Enable . . . . . . . . NO Telemetry Address . . . . . . 3 System Detector 9-16 Address. . 0 Telemetry Response Delay. . . . 7800 AB3418 Address. . . . . . . 0 AB3418 Group Address. . . . 0 AB3418 Response Delay . . . . 0 AB3418 Single Flag Enable . . . NO AB3418 Drop-Out Time. . . . 0 AB3418 TOD SF Select. . . . 0 Data, Parity, Stop. . . . . . 8, 0, 1

### Wellington County 1-12 124 & Kossuth 11/4/2013 15:34

-----

By-Phase Timing Data

|                   | 1   | 2   | 3   | 4   | 5   | Ph<br>6 | ase<br>7 | 8   | 9   | 10  | 11  | 12  |
|-------------------|-----|-----|-----|-----|-----|---------|----------|-----|-----|-----|-----|-----|
| Direction         | Ţ   | Z   | 2   | 4   | J   | 0       | /        | 0   | 9   | 10  |     | ΤZ  |
| Minimum Green     | 5   | 30  | 5   | 12  | 5   | 30      | 5        | 5   | 5   | 5   | 5   | 5   |
| Bike Min Green    | 0   | 0   | 0   | 0   | 0   | 0       | 0        | 0   | 0   | 0   | 0   | 0   |
| Cond Serv Min Grn | 0   | 0   | 0   | 0   | 0   | 0       | 0        | 0   | 0   | 0   | 0   | 0   |
| Walk              | 0   | 5   | 0   | 5   | 0   | 5       | 0        | 5   | 0   | 10  | 0   | 10  |
| Ped Clearance     | 0   | 7   | 0   | 7   | 0   | 7       | 0        | 7   | 0   | 16  | 0   | 16  |
| Veh Extension     | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0     | 5.0      | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
| Alt Veh Exten     | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0     | 0.0      | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Max Extension     | 0   | 0   | 0   | 0   | 0   | 0       | 0        | 0   | 0   | 0   | 0   | 0   |
| Max 1             | 35  | 40  | 35  | 35  | 35  | 40      | 35       | 35  | 35  | 35  | 35  | 35  |
| Max 2             | 40  | 60  | 40  | 40  | 40  | 60      | 40       | 40  | 40  | 40  | 40  | 40  |
| Max 3             | 0   | 0   | 0   | 0   | 0   | 0       | 0        | 0   | 0   | 0   | 0   | 0   |
| Det. Fail Max     | 0   | 0   | 0   | 0   | 0   | 0       | 0        | 0   | 0   | 0   | 0   | 0   |
| Yellow Change     | 3.0 | 5.0 | 3.0 | 5.0 | 3.0 | 5.0     | 3.0      | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
| Red Clearance     | 1.0 | 2.0 | 1.0 | 2.0 | 1.0 | 2.0     | 1.0      | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| Red Revert        | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0     | 2.0      | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
| Act. B4 Init      | 0   | 0   | 0   | 0   | 0   | 0       | 0        | 0   | 0   | 0   | 0   | 0   |
| Sec/Actuation     | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0     | 0.0      | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Max Initial       | 30  | 30  | 30  | 30  | 30  | 30      | 30       | 30  | 30  | 30  | 30  | 30  |
| Time B4 Reduction | 0   | 0   | 0   | 0   | 0   | 0       | 0        | 0   | 0   | 0   | 0   | 0   |
| Cars Waiting      | 0   | 0   | 0   | 0   | 0   | 0       | 0        | 0   | 0   | 0   | 0   | 0   |
| Time To Reduce    | 0   | 0   | 0   | 0   | 0   | 0       | 0        | 0   | 0   | 0   | 0   | 0   |
| Minimum Gap       | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0     | 0.0      | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |

Power Start, Remote Flash

Cycle Through Phases. . . . NO

|                                                                                                                |     |   |    |   |   |   | ase |   |   |    |    |    |   |   |     |   |
|----------------------------------------------------------------------------------------------------------------|-----|---|----|---|---|---|-----|---|---|----|----|----|---|---|-----|---|
|                                                                                                                |     |   | 3  |   |   |   |     |   | 9 | 10 | 11 | 12 |   |   |     |   |
|                                                                                                                |     |   | •  | • | • |   | •   | • | • | •  | •  | •  |   |   |     |   |
|                                                                                                                | •   |   |    | • | • |   | •   | • | • | •  | •  | •  |   |   |     |   |
|                                                                                                                | •   |   |    | • |   |   |     | • | • | •  | •  | •  |   |   | _   |   |
| Exit Remote Flash                                                                                              | •   | Х | •  | • | • | Х | •   | • | • | •  | •  | •  |   |   | lap |   |
| Remote Flash Yellow.                                                                                           |     |   | •  |   |   |   |     |   |   | •  | •  | •  |   | В | -   | D |
| Flash Together                                                                                                 | •   | Х | •  | Х | • | Х | •   | Х | • | Х  | •  | Х  | • | Х | •   | Х |
| Initialization Interval<br>Power Start<br>External Start<br>Power Start All Red Tim<br>Power Start Flash Time. | ne. | • |    |   |   |   |     |   |   |    |    |    |   |   |     |   |
| Remote Flash Options:                                                                                          |     |   |    |   |   |   |     |   |   |    |    |    |   |   |     |   |
| Out of Flash Yellow                                                                                            |     |   | ΥE | S |   |   |     |   |   |    |    |    |   |   |     |   |
| Out of Flash All Red                                                                                           |     |   | Ν  | 0 |   |   |     |   |   |    |    |    |   |   |     |   |
| Minimum Recall                                                                                                 |     | • | Ν  | 0 |   |   |     |   |   |    |    |    |   |   |     |   |
| Alternate Flash                                                                                                |     | • | Ν  | 0 |   |   |     |   |   |    |    |    |   |   |     |   |
| Flash Thru Load Switche                                                                                        | es. |   | Ν  | 0 |   |   |     |   |   |    |    |    |   |   |     |   |

\_\_\_\_\_

Option Data

\_\_\_\_\_

|                       |   |   |   |   |   | Ρ | has | е |   |   |    |    |    |
|-----------------------|---|---|---|---|---|---|-----|---|---|---|----|----|----|
|                       |   | 1 | 2 | 3 | 4 | 5 | 6   | 7 | 8 | 9 | 10 | 11 | 12 |
| Guaranteed Passage .  | • |   |   |   |   |   | •   | • | • |   |    |    | •  |
| Call To NonActuated 1 | • | • | Х |   |   |   | Х   | • | • |   |    |    | •  |
| Call To NonActuated 2 | • |   |   |   | Х |   | •   | • | Х |   |    |    | •  |
| Dual Entry            | • |   | Х |   |   |   | Х   | • | • |   |    |    | •  |
| Conditional Service . | • | Х |   | Х |   | Х | •   | Х | • | Х |    | Х  | •  |
| Conditional Reservice | • |   |   |   |   |   | •   | • | • |   |    |    | •  |
| Actuated Rest in Walk | • |   |   |   |   |   | •   | • | • |   |    |    | •  |
| Flashing Walk         | • | • | • | • | • | • | •   | • | • | • |    | •  | •  |

| Enable Programma                    | able Options                  |
|-------------------------------------|-------------------------------|
| Dual Entry ON                       | Backup Protection Group 1 OFF |
| Conditional Service OFF             | Backup Protection Group 2 OFF |
| Ped Clearance Protection OFF        | Backup Protection Group 3 OFF |
| Special Preempt Overlap Flash . OFF | Simultaneous Gap Group 1 OFF  |
| Cond Service Det Cross Switch . OFF | Simultaneous Gap Group 2 OFF  |
| Lock Detectors in Red Only OFF      | Simultaneous Gap Group 3 OFF  |

 Five Section Left Turn Control

 Phases: 5-2
 7-4
 1-6
 3-8
 11-10
 9-12

 Left Turn Head.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

Recall Data, Dimming

|                       |   |   |   |   |   | Ρ | has | е |   |   |    |    |    |
|-----------------------|---|---|---|---|---|---|-----|---|---|---|----|----|----|
|                       |   | 1 | 2 | 3 | 4 | 5 | 6   | 7 | 8 | 9 | 10 | 11 | 12 |
| Locking Detector      | • |   |   |   |   |   |     |   | • | • |    |    | •  |
| Vehicle Recall        | • |   | Х |   |   |   | Х   |   | • | • |    |    | •  |
| Pedestrian Recall     | • |   | • | • | • | • | •   | • | • | • | •  |    | •  |
| Recall To Max         |   |   |   |   |   |   |     |   |   |   |    |    |    |
| Soft Recall           | • | • | • | • | • | • | •   | • | • | • | •  | •  | •  |
| Don't Rest Here       |   |   |   |   |   |   |     |   |   |   |    |    |    |
| Ped Dark if No Call . | • | • | • | • | • | • | •   | • | • | • | •  | •  | •  |

-----

Dimming:

|                      |    |    |    |    | Lo | ad S | witc | h  |    |    |    |    |    |    |    |
|----------------------|----|----|----|----|----|------|------|----|----|----|----|----|----|----|----|
| 1                    | 2  | 3  | 4  | 5  | 6  | 7    | 8    | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| Green/Walk NC        | NO | NO | NO | NO | NO | NO   | NO   | NO | NO | NO | NO | NO | NO | NO | NO |
| Yellow/Ped Clear. NC | NO | NO | NO | NO | NO | NO   | NO   | NO | NO | NO | NO | NO | NO | NO | NO |
| Red/Don't Walk NO    | NO | NO | NO | NO | NO | NO   | NO   | NO | NO | NO | NO | NO | NO | NO | NO |

Appendix B Baseline (2013) Traffic Synchro Capacity Analysis

|                              | ٨            | $\mathbf{F}$ | 1     | 1     | Ļ           | ~          |
|------------------------------|--------------|--------------|-------|-------|-------------|------------|
| Lane Group                   | EBL          | EBR          | NBL   | NBT   | SBT         | SBR        |
| Lane Configurations          | ۲            | 1            | ሻ     | 1     | <b>†</b>    | 1          |
| Volume (vph)                 | 314          | 34           | 60    | 706   | 641         | 335        |
| Turn Type                    | NA           | Free         | Perm  | NA    | NA          | Free       |
| Protected Phases             | 4            |              |       | 2     | 6           |            |
| Permitted Phases             |              | Free         | 2     |       |             | Free       |
| Detector Phase               | 4            |              | 2     | 2     | 6           |            |
| Switch Phase                 |              |              |       |       |             |            |
| Minimum Initial (s)          | 12.0         |              | 30.0  | 30.0  | 30.0        |            |
| Minimum Split (s)            | 33.0         |              | 37.0  | 37.0  | 37.0        |            |
| Total Split (s)              | 35.0         |              | 40.0  | 40.0  | 40.0        |            |
| Total Split (%)              | 46.7%        |              | 53.3% | 53.3% | 53.3%       |            |
| Yellow Time (s)              | 5.0          |              | 5.0   | 5.0   | 5.0         |            |
| All-Red Time (s)             | 2.0          |              | 2.0   | 2.0   | 2.0         |            |
| Lost Time Adjust (s)         | -3.0         |              | -3.0  | -3.0  | -3.0        |            |
| Total Lost Time (s)          | 4.0          |              | 4.0   | 4.0   | 4.0         |            |
| Lead/Lag                     |              |              |       |       |             |            |
| Lead-Lag Optimize?           |              |              |       |       |             |            |
| Recall Mode                  | None         |              | Min   | Min   | Min         |            |
| Act Effct Green (s)          | 24.2         | 67.8         | 35.6  | 35.6  | 35.6        | 67.8       |
| Actuated g/C Ratio           | 0.36         | 1.00         | 0.53  | 0.53  | 0.53        | 1.00       |
| v/c Ratio                    | 0.62         | 0.03         | 0.36  | 0.86  | 0.78        | 0.27       |
| Control Delay                | 23.4         | 0.0          | 18.7  | 27.6  | 22.3        | 0.5        |
| Queue Delay                  | 0.0          | 0.0          | 0.0   | 0.0   | 0.0         | 0.0        |
| Total Delay                  | 23.4         | 0.0          | 18.7  | 27.6  | 22.3        | 0.5        |
| LOS                          | С            | А            | В     | С     | С           | А          |
| Approach Delay               | 21.1         |              |       | 26.9  | 14.8        |            |
| Approach LOS                 | С            |              |       | С     | В           |            |
| Intersection Summary         |              |              |       |       |             |            |
| Cycle Length: 75             |              |              |       |       |             |            |
| Actuated Cycle Length: 67    | .8           |              |       |       |             |            |
| Natural Cycle: 70            |              |              |       |       |             |            |
| Control Type: Actuated-Un    | ncoordinated |              |       |       |             |            |
| Maximum v/c Ratio: 0.86      |              |              |       |       |             |            |
| Intersection Signal Delay:   | 20.3         |              |       | li    | ntersectior | LOS: C     |
| Intersection Capacity Utiliz |              |              |       | [(    | CU Level o  | of Service |
| Analysis Period (min) 15     |              |              |       |       |             |            |
| Colline and Diverse 1.11     |              | (556.0)      |       |       |             |            |

### Splits and Phases: 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)



# Queues 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)

|                        | ٦     | $\mathbf{r}$ | 1    | <b>†</b> | Ŧ      | 1     |
|------------------------|-------|--------------|------|----------|--------|-------|
| Lane Group             | EBL   | EBR          | NBL  | NBT      | SBT    | SBR   |
| Lane Group Flow (vph)  | 349   | 38           | 67   | 784      | 712    | 372   |
| v/c Ratio              | 0.62  | 0.03         | 0.36 | 0.86     | 0.78   | 0.27  |
| Control Delay          | 23.4  | 0.0          | 18.7 | 27.6     | 22.3   | 0.5   |
| Queue Delay            | 0.0   | 0.0          | 0.0  | 0.0      | 0.0    | 0.0   |
| Total Delay            | 23.4  | 0.0          | 18.7 | 27.6     | 22.3   | 0.5   |
| Queue Length 50th (m)  | 37.9  | 0.0          | 4.9  | 84.4     | 71.3   | 0.0   |
| Queue Length 95th (m)  | 63.0  | 0.0          | 18.0 | #181.7   | #156.8 | 0.0   |
| Internal Link Dist (m) | 704.1 |              |      | 173.7    | 579.0  |       |
| Turn Bay Length (m)    |       | 30.0         | 90.0 |          |        | 120.0 |
| Base Capacity (vph)    | 724   | 1350         | 187  | 931      | 931    | 1401  |
| Starvation Cap Reductn | 0     | 0            | 0    | 0        | 0      | 0     |
| Spillback Cap Reductn  | 0     | 0            | 0    | 0        | 0      | 0     |
| Storage Cap Reductn    | 0     | 0            | 0    | 0        | 0      | 0     |
| Reduced v/c Ratio      | 0.48  | 0.03         | 0.36 | 0.84     | 0.76   | 0.27  |
| Intersection Summary   |       |              |      |          |        |       |

#### Intersection Summary

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

11/20/2013

|                               | ≯           | $\mathbf{i}$ | 1       | 1        | ŧ            | 1               |   |     |  |
|-------------------------------|-------------|--------------|---------|----------|--------------|-----------------|---|-----|--|
| Movement                      | EBL         | EBR          | NBL     | NBT      | SBT          | SBR             |   |     |  |
| Lane Configurations           | ۲           | 1            | <u></u> | 1        | 1            | 1               |   |     |  |
| Volume (vph)                  | 314         | 34           | 60      | 706      | 641          | 335             |   |     |  |
| Ideal Flow (vphpl)            | 1775        | 1750         | 1775    | 1900     | 1900         | 1750            |   |     |  |
| Total Lost time (s)           | 4.0         | 1.0          | 4.0     | 4.0      | 4.0          | 1.0             |   |     |  |
| Lane Util. Factor             | 1.00        | 1.00         | 1.00    | 1.00     | 1.00         | 1.00            |   |     |  |
| Frt                           | 1.00        | 0.85         | 1.00    | 1.00     | 1.00         | 0.85            |   |     |  |
| Flt Protected                 | 0.95        | 1.00         | 0.95    | 1.00     | 1.00         | 1.00            |   |     |  |
| Satd. Flow (prot)             | 1573        | 1350         | 1619    | 1740     | 1740         | 1401            |   |     |  |
| Flt Permitted                 | 0.95        | 1.00         | 0.21    | 1.00     | 1.00         | 1.00            |   |     |  |
| Satd. Flow (perm)             | 1573        | 1350         | 351     | 1740     | 1740         | 1401            |   |     |  |
| Peak-hour factor, PHF         | 0.90        | 0.90         | 0.90    | 0.90     | 0.90         | 0.90            |   |     |  |
| Adj. Flow (vph)               | 349         | 38           | 67      | 784      | 712          | 372             |   |     |  |
| RTOR Reduction (vph)          | 0           | 0            | 0       | 04       | 0            | 0               |   |     |  |
| Lane Group Flow (vph)         | 349         | 38           | 67      | 784      | 712          | 372             |   |     |  |
| Heavy Vehicles (%)            | 6%          | 9%           | 3%      | 8%       | 8%           | 5%              |   |     |  |
| Turn Type                     | NA          | Free         | Perm    | NA       | NA           | Free            |   |     |  |
| Protected Phases              | 1NA<br>4    | FIEE         | Felli   | 1NA<br>2 | 6            | FIEE            |   |     |  |
| Permitted Phases              | 4           | Free         | 2       | Z        | 0            | Free            |   |     |  |
| Actuated Green, G (s)         | 21.1        | 67.7         | 32.6    | 32.6     | 32.6         | 67.7            |   |     |  |
|                               | 21.1        | 67.7         | 35.6    | 35.6     | 32.0<br>35.6 | 67.7            |   |     |  |
| Effective Green, g (s)        |             |              |         |          |              |                 |   |     |  |
| Actuated g/C Ratio            | 0.36        | 1.00         | 0.53    | 0.53     | 0.53         | 1.00            |   |     |  |
| Clearance Time (s)            | 7.0         |              | 7.0     | 7.0      | 7.0          |                 |   |     |  |
| Vehicle Extension (s)         | 5.0         | 4050         | 5.0     | 5.0      | 5.0          | 1.101           |   |     |  |
| Lane Grp Cap (vph)            | 559         | 1350         | 184     | 914      | 914          | 1401            |   |     |  |
| v/s Ratio Prot                | c0.22       | 0.00         | 0.10    | c0.45    | 0.41         | 0.07            |   |     |  |
| v/s Ratio Perm                | 0 ( )       | 0.03         | 0.19    | 0.07     | 0.70         | 0.27            |   |     |  |
| v/c Ratio                     | 0.62        | 0.03         | 0.36    | 0.86     | 0.78         | 0.27            |   |     |  |
| Uniform Delay, d1             | 18.1        | 0.0          | 9.4     | 13.9     | 12.9         | 0.0             |   |     |  |
| Progression Factor            | 1.00        | 1.00         | 1.00    | 1.00     | 1.00         | 1.00            |   |     |  |
| Incremental Delay, d2         | 3.1         | 0.0          | 2.6     | 8.8      | 5.0          | 0.5             |   |     |  |
| Delay (s)                     | 21.1        | 0.0          | 12.0    | 22.6     | 17.8         | 0.5             |   |     |  |
| Level of Service              | C           | А            | В       | C        | B            | А               |   |     |  |
| Approach Delay (s)            | 19.1        |              |         | 21.8     | 11.9         |                 |   |     |  |
| Approach LOS                  | В           |              |         | С        | В            |                 |   |     |  |
| Intersection Summary          |             |              |         |          |              |                 |   |     |  |
| HCM 2000 Control Delay        |             |              | 16.7    | H        | CM 2000      | Level of Servic | 9 | В   |  |
| HCM 2000 Volume to Capa       | acity ratio |              | 0.76    |          |              |                 |   |     |  |
| Actuated Cycle Length (s)     |             |              | 67.7    |          | um of lost   |                 |   | 8.0 |  |
| Intersection Capacity Utiliza | ation       |              | 78.7%   | IC       | U Level o    | of Service      |   | D   |  |
| Analysis Period (min)         |             |              | 15      |          |              |                 |   |     |  |
| c Critical Lane Group         |             |              |         |          |              |                 |   |     |  |

c Critical Lane Group

|                              | ٦            | $\mathbf{F}$ | 1     | 1          | Ļ           | 1          |
|------------------------------|--------------|--------------|-------|------------|-------------|------------|
| Lane Group                   | EBL          | EBR          | NBL   | NBT        | SBT         | SBR        |
| Lane Configurations          | ۲            | 1            | ሻ     | 1          | <b>†</b>    | 1          |
| Volume (vph)                 | 300          | 82           | 76    | 594        | 728         | 408        |
| Turn Type                    | NA           | Free         | Perm  | NA         | NA          | Free       |
| Protected Phases             | 4            |              |       | 2          | 6           |            |
| Permitted Phases             |              | Free         | 2     |            |             | Free       |
| Detector Phase               | 4            |              | 2     | 2          | 6           |            |
| Switch Phase                 |              |              |       |            |             |            |
| Minimum Initial (s)          | 12.0         |              | 30.0  | 30.0       | 30.0        |            |
| Minimum Split (s)            | 33.0         |              | 37.0  | 37.0       | 37.0        |            |
| Total Split (s)              | 35.0         |              | 40.0  | 40.0       | 40.0        |            |
| Total Split (%)              | 46.7%        |              | 53.3% | 53.3%      | 53.3%       |            |
| Yellow Time (s)              | 5.0          |              | 5.0   | 5.0        | 5.0         |            |
| All-Red Time (s)             | 2.0          |              | 2.0   | 2.0        | 2.0         |            |
| Lost Time Adjust (s)         | -3.0         |              | -3.0  | -3.0       | -3.0        |            |
| Total Lost Time (s)          | 4.0          |              | 4.0   | 4.0        | 4.0         |            |
| Lead/Lag                     |              |              |       |            |             |            |
| Lead-Lag Optimize?           |              |              |       |            |             |            |
| Recall Mode                  | None         |              | Min   | Min        | Min         |            |
| Act Effct Green (s)          | 23.4         | 67.6         | 36.2  | 36.2       | 36.2        | 67.6       |
| Actuated g/C Ratio           | 0.35         | 1.00         | 0.54  | 0.54       | 0.54        | 1.00       |
| v/c Ratio                    | 0.60         | 0.06         | 0.64  | 0.72       | 0.86        | 0.32       |
| Control Delay                | 23.0         | 0.1          | 42.1  | 19.4       | 27.3        | 0.6        |
| Queue Delay                  | 0.0          | 0.0          | 0.0   | 0.0        | 0.0         | 0.0        |
| Total Delay                  | 23.0         | 0.1          | 42.1  | 19.4       | 27.3        | 0.6        |
| LOS                          | С            | Α            | D     | В          | С           | А          |
| Approach Delay               | 18.1         |              |       | 22.0       | 17.7        |            |
| Approach LOS                 | В            |              |       | С          | В           |            |
| Intersection Summary         |              |              |       |            |             |            |
| Cycle Length: 75             |              |              |       |            |             |            |
| Actuated Cycle Length: 67    | 7.6          |              |       |            |             |            |
| Natural Cycle: 75            |              |              |       |            |             |            |
| Control Type: Actuated-Ur    | ncoordinated |              |       |            |             |            |
| Maximum v/c Ratio: 0.86      |              |              |       |            |             |            |
| Intersection Signal Delay:   | 19.1         |              |       | li         | ntersectior | ו LOS: B   |
| Intersection Capacity Utiliz | zation 91.1% |              |       | 10         | CU Level o  | of Service |
| Analysis Period (min) 15     |              |              |       |            |             |            |
| Calita and Dhassa 1. 1       |              | (000.1)      |       | <b>_</b> . | 101.01      |            |

### Splits and Phases: 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)



|                        | ٦     | $\mathbf{r}$ | 1     | <b>†</b> | Ŧ      | 1     |
|------------------------|-------|--------------|-------|----------|--------|-------|
| Lane Group             | EBL   | EBR          | NBL   | NBT      | SBT    | SBR   |
| Lane Group Flow (vph)  | 333   | 91           | 84    | 660      | 809    | 453   |
| v/c Ratio              | 0.60  | 0.06         | 0.64  | 0.72     | 0.86   | 0.32  |
| Control Delay          | 23.0  | 0.1          | 42.1  | 19.4     | 27.3   | 0.6   |
| Queue Delay            | 0.0   | 0.0          | 0.0   | 0.0      | 0.0    | 0.0   |
| Total Delay            | 23.0  | 0.1          | 42.1  | 19.4     | 27.3   | 0.6   |
| Queue Length 50th (m)  | 35.5  | 0.0          | 7.2   | 60.8     | 84.8   | 0.0   |
| Queue Length 95th (m)  | 59.2  | 0.0          | #34.8 | #141.5   | #189.0 | 0.0   |
| Internal Link Dist (m) | 704.1 |              |       | 173.7    | 579.0  |       |
| Turn Bay Length (m)    |       | 30.0         | 90.0  |          |        | 120.0 |
| Base Capacity (vph)    | 739   | 1456         | 131   | 915      | 941    | 1428  |
| Starvation Cap Reductn | 0     | 0            | 0     | 0        | 0      | 0     |
| Spillback Cap Reductn  | 0     | 0            | 0     | 0        | 0      | 0     |
| Storage Cap Reductn    | 0     | 0            | 0     | 0        | 0      | 0     |
| Reduced v/c Ratio      | 0.45  | 0.06         | 0.64  | 0.72     | 0.86   | 0.32  |
| Intersection Summary   |       |              |       |          |        |       |

#### Intersection Summary

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

11/20/2013

|                               | ٦          | $\mathbf{i}$ | 1     | 1    | ŧ          |                 |   |     |
|-------------------------------|------------|--------------|-------|------|------------|-----------------|---|-----|
| Movement                      | EBL        | EBR          | NBL   | NBT  | SBT        | SBR             |   |     |
| Lane Configurations           | ٦          | 1            | ٦     | 1    | 1          | 1               |   |     |
| Volume (vph)                  | 300        | 82           | 76    | 594  | 728        | 408             |   |     |
| Ideal Flow (vphpl)            | 1775       | 1750         | 1775  | 1900 | 1900       | 1750            |   |     |
| Total Lost time (s)           | 4.0        | 1.0          | 4.0   | 4.0  | 4.0        | 1.0             |   |     |
| Lane Util. Factor             | 1.00       | 1.00         | 1.00  | 1.00 | 1.00       | 1.00            |   |     |
| Frt                           | 1.00       | 0.85         | 1.00  | 1.00 | 1.00       | 0.85            |   |     |
| Flt Protected                 | 0.95       | 1.00         | 0.95  | 1.00 | 1.00       | 1.00            |   |     |
| Satd. Flow (prot)             | 1603       | 1456         | 1603  | 1708 | 1756       | 1428            |   |     |
| Flt Permitted                 | 0.95       | 1.00         | 0.15  | 1.00 | 1.00       | 1.00            |   |     |
| Satd. Flow (perm)             | 1603       | 1456         | 245   | 1708 | 1756       | 1428            |   |     |
| Peak-hour factor, PHF         | 0.90       | 0.90         | 0.90  | 0.90 | 0.90       | 0.90            |   |     |
| Adj. Flow (vph)               | 333        | 91           | 84    | 660  | 809        | 453             |   |     |
| RTOR Reduction (vph)          | 0          | 0            | 0     | 000  | 0          | 0               |   |     |
| Lane Group Flow (vph)         | 333        | 91           | 84    | 660  | 809        | 453             |   |     |
| Heavy Vehicles (%)            | 4%         | 1%           | 4%    | 10%  | 7%         | 3%              |   |     |
| Turn Type                     | NA         | Free         | Perm  | NA   | NA         | Free            |   |     |
| Protected Phases              | 4          | 1100         | 1 Onn | 2    | 6          | 1100            |   |     |
| Permitted Phases              | ,          | Free         | 2     | 2    | Ū          | Free            |   |     |
| Actuated Green, G (s)         | 20.3       | 67.4         | 33.1  | 33.1 | 33.1       | 67.4            |   |     |
| Effective Green, g (s)        | 23.3       | 67.4         | 36.1  | 36.1 | 36.1       | 67.4            |   |     |
| Actuated g/C Ratio            | 0.35       | 1.00         | 0.54  | 0.54 | 0.54       | 1.00            |   |     |
| Clearance Time (s)            | 7.0        | 1.00         | 7.0   | 7.0  | 7.0        | 1.00            |   |     |
| Vehicle Extension (s)         | 5.0        |              | 5.0   | 5.0  | 5.0        |                 |   |     |
| Lane Grp Cap (vph)            | 554        | 1456         | 131   | 914  | 940        | 1428            |   |     |
| v/s Ratio Prot                | c0.21      | 1700         | 101   | 0.39 | c0.46      | 1120            |   |     |
| v/s Ratio Perm                | 55.2 T     | 0.06         | 0.34  | 0.07 | 00.10      | 0.32            |   |     |
| v/c Ratio                     | 0.60       | 0.06         | 0.64  | 0.72 | 0.86       | 0.32            |   |     |
| Uniform Delay, d1             | 18.2       | 0.0          | 11.1  | 11.9 | 13.5       | 0.0             |   |     |
| Progression Factor            | 1.00       | 1.00         | 1.00  | 1.00 | 1.00       | 1.00            |   |     |
| Incremental Delay, d2         | 2.7        | 0.1          | 13.8  | 3.5  | 8.8        | 0.6             |   |     |
| Delay (s)                     | 20.9       | 0.1          | 24.8  | 15.3 | 22.3       | 0.6             |   |     |
| Level of Service              | C          | A            | C     | B    | C          | A               |   |     |
| Approach Delay (s)            | 16.4       |              | -     | 16.4 | 14.5       |                 |   |     |
| Approach LOS                  | В          |              |       | В    | В          |                 |   |     |
| Intersection Summary          |            |              |       |      |            |                 |   |     |
| HCM 2000 Control Delay        |            |              | 15.4  | H    | CM 2000    | Level of Servic | 9 | В   |
| HCM 2000 Volume to Capa       | city ratio |              | 0.76  |      |            |                 |   |     |
| Actuated Cycle Length (s)     |            |              | 67.4  | Si   | um of lost | t time (s)      |   | 8.0 |
| Intersection Capacity Utiliza | tion       |              | 91.1% |      |            | of Service      |   | F   |
| Analysis Period (min)         |            |              | 15    |      |            |                 |   |     |
| c Critical Lane Group         |            |              |       |      |            |                 |   |     |

c Critical Lane Group

Appendix C Future (2015) Background Traffic Synchro Capacity Analysis

|                              | ٦             | $\mathbf{i}$ | 1         | 1        | Ļ           | ~          |
|------------------------------|---------------|--------------|-----------|----------|-------------|------------|
| Lane Group                   | EBL           | EBR          | NBL       | NBT      | SBT         | SBR        |
| Lane Configurations          | ۲             | 1            | ሻ         | 1        | <b>†</b>    | 1          |
| Volume (vph)                 | 346           | 37           | 66        | 778      | 707         | 369        |
| Turn Type                    | NA            | Free         | Perm      | NA       | NA          | Free       |
| Protected Phases             | 4             |              |           | 2        | 6           |            |
| Permitted Phases             |               | Free         | 2         |          |             | Free       |
| Detector Phase               | 4             |              | 2         | 2        | 6           |            |
| Switch Phase                 |               |              |           |          |             |            |
| Minimum Initial (s)          | 12.0          |              | 30.0      | 30.0     | 30.0        |            |
| Minimum Split (s)            | 33.0          |              | 37.0      | 37.0     | 37.0        |            |
| Total Split (s)              | 33.0          |              | 47.0      | 47.0     | 47.0        |            |
| Total Split (%)              | 41.3%         |              | 58.8%     | 58.8%    | 58.8%       |            |
| Yellow Time (s)              | 5.0           |              | 5.0       | 5.0      | 5.0         |            |
| All-Red Time (s)             | 2.0           |              | 2.0       | 2.0      | 2.0         |            |
| Lost Time Adjust (s)         | -3.0          |              | -3.0      | -3.0     | -3.0        |            |
| Total Lost Time (s)          | 4.0           |              | 4.0       | 4.0      | 4.0         |            |
| Lead/Lag                     |               |              |           |          |             |            |
| Lead-Lag Optimize?           |               |              |           |          |             |            |
| Recall Mode                  | None          |              | Min       | Min      | Min         |            |
| Act Effct Green (s)          | 25.9          | 75.3         | 41.3      | 41.3     | 41.3        | 75.3       |
| Actuated g/C Ratio           | 0.34          | 1.00         | 0.55      | 0.55     | 0.55        | 1.00       |
| v/c Ratio                    | 0.71          | 0.03         | 0.46      | 0.90     | 0.82        | 0.29       |
| Control Delay                | 30.1          | 0.1          | 23.2      | 31.5     | 24.0        | 0.5        |
| Queue Delay                  | 0.0           | 0.0          | 0.0       | 0.0      | 0.0         | 0.0        |
| Total Delay                  | 30.1          | 0.1          | 23.2      | 31.5     | 24.0        | 0.5        |
| LOS                          | С             | А            | С         | С        | С           | А          |
| Approach Delay               | 27.2          |              |           | 30.8     | 16.0        |            |
| Approach LOS                 | С             |              |           | С        | В           |            |
| Intersection Summary         |               |              |           |          |             |            |
| Cycle Length: 80             |               |              |           |          |             |            |
| Actuated Cycle Length: 75    | 5.3           |              |           |          |             |            |
| Natural Cycle: 80            |               |              |           |          |             |            |
| Control Type: Actuated-Ur    | ncoordinated  |              |           |          |             |            |
| Maximum v/c Ratio: 0.90      |               |              |           |          |             |            |
| Intersection Signal Delay:   |               |              |           |          | ntersectior |            |
| Intersection Capacity Utiliz | zation 85.9%  |              |           | 10       | CU Level (  | of Service |
| Analysis Period (min) 15     |               |              |           |          |             |            |
| Calita and Dhassas 1.11      | loonolor Dood | (۱۵۵۹        | Malliment | on Doc - | 10101/      | outh Dee   |
| Splits and Phases: 1: H      | lespeler Road | (RR24)       | vvellingt | on Road  | 124 & KOS   | suth Roa   |



|                        | ≯     | $\mathbf{r}$ | 1    | <b>†</b> | ŧ      | 1     |
|------------------------|-------|--------------|------|----------|--------|-------|
| Lane Group             | EBL   | EBR          | NBL  | NBT      | SBT    | SBR   |
| Lane Group Flow (vph)  | 384   | 41           | 73   | 864      | 786    | 410   |
| v/c Ratio              | 0.71  | 0.03         | 0.46 | 0.90     | 0.82   | 0.29  |
| Control Delay          | 30.1  | 0.1          | 23.2 | 31.5     | 24.0   | 0.5   |
| Queue Delay            | 0.0   | 0.0          | 0.0  | 0.0      | 0.0    | 0.0   |
| Total Delay            | 30.1  | 0.1          | 23.2 | 31.5     | 24.0   | 0.5   |
| Queue Length 50th (m)  | 50.8  | 0.0          | 6.7  | 117.0    | 97.9   | 0.0   |
| Queue Length 95th (m)  | 82.3  | 0.0          | 21.4 | #203.3   | #175.2 | 0.0   |
| Internal Link Dist (m) | 704.1 |              |      | 173.7    | 579.0  |       |
| Turn Bay Length (m)    |       | 30.0         | 90.0 |          |        | 120.0 |
| Base Capacity (vph)    | 612   | 1350         | 167  | 1003     | 1003   | 1401  |
| Starvation Cap Reductn | 0     | 0            | 0    | 0        | 0      | 0     |
| Spillback Cap Reductn  | 0     | 0            | 0    | 0        | 0      | 0     |
| Storage Cap Reductn    | 0     | 0            | 0    | 0        | 0      | 0     |
| Reduced v/c Ratio      | 0.63  | 0.03         | 0.44 | 0.86     | 0.78   | 0.29  |
| Intersection Summary   |       |              |      |          |        |       |

#### Intersection Summary

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

11/20/2013

|                                   | ٦           | $\mathbf{i}$ | 1         | 1       | ŧ          | 1                |          |     |  |
|-----------------------------------|-------------|--------------|-----------|---------|------------|------------------|----------|-----|--|
| Movement                          | EBL         | EBR          | NBL       | NBT     | SBT        | SBR              |          |     |  |
| Lane Configurations               | ٦           | 1            | ٦         | 1       | 1          | 1                |          |     |  |
| Volume (vph)                      | 346         | 37           | 66        | 778     | 707        | 369              |          |     |  |
| Ideal Flow (vphpl)                | 1775        | 1750         | 1775      | 1900    | 1900       | 1750             |          |     |  |
| Total Lost time (s)               | 4.0         | 1.0          | 4.0       | 4.0     | 4.0        | 1.0              |          |     |  |
| Lane Util. Factor                 | 1.00        | 1.00         | 1.00      | 1.00    | 1.00       | 1.00             |          |     |  |
| Frt                               | 1.00        | 0.85         | 1.00      | 1.00    | 1.00       | 0.85             |          |     |  |
| Flt Protected                     | 0.95        | 1.00         | 0.95      | 1.00    | 1.00       | 1.00             |          |     |  |
| Satd. Flow (prot)                 | 1573        | 1350         | 1619      | 1740    | 1740       | 1401             |          |     |  |
| Flt Permitted                     | 0.95        | 1.00         | 0.17      | 1.00    | 1.00       | 1.00             |          |     |  |
| Satd. Flow (perm)                 | 1573        | 1350         | 289       | 1740    | 1740       | 1401             |          |     |  |
| Peak-hour factor, PHF             | 0.90        | 0.90         | 0.90      | 0.90    | 0.90       | 0.90             |          |     |  |
| Adj. Flow (vph)                   | 384         | 41           | 73        | 864     | 786        | 410              |          |     |  |
| RTOR Reduction (vph)              | 0           | 0            | 0         | 004     | 007        | 0                |          |     |  |
| Lane Group Flow (vph)             | 384         | 41           | 73        | 864     | 786        | 410              |          |     |  |
| Heavy Vehicles (%)                | 504<br>6%   | 9%           | 3%        | 8%      | 8%         | 5%               |          |     |  |
| Turn Type                         | NA          | Free         | Perm      | NA      | NA         | Free             |          |     |  |
| Protected Phases                  | 1NA<br>4    | riee         | Pellii    | NA<br>2 | 1NA<br>6   | riee             |          |     |  |
| Permitted Phases                  | 4           | Free         | ſ         | Z       | 0          | Free             |          |     |  |
|                                   | 22.0        | Free         | 2<br>38.3 | 20.2    | 20.2       | Free<br>75.2     |          |     |  |
| Actuated Green, G (s)             | 22.9        | 75.2         |           | 38.3    | 38.3       |                  |          |     |  |
| Effective Green, g (s)            | 25.9        | 75.2         | 41.3      | 41.3    | 41.3       | 75.2             |          |     |  |
| Actuated g/C Ratio                | 0.34        | 1.00         | 0.55      | 0.55    | 0.55       | 1.00             |          |     |  |
| Clearance Time (s)                | 7.0         |              | 7.0       | 7.0     | 7.0        |                  |          |     |  |
| Vehicle Extension (s)             | 5.0         |              | 5.0       | 5.0     | 5.0        |                  |          |     |  |
| Lane Grp Cap (vph)                | 541         | 1350         | 158       | 955     | 955        | 1401             |          |     |  |
| v/s Ratio Prot                    | c0.24       |              |           | c0.50   | 0.45       |                  |          |     |  |
| v/s Ratio Perm                    |             | 0.03         | 0.25      |         |            | 0.29             |          |     |  |
| v/c Ratio                         | 0.71        | 0.03         | 0.46      | 0.90    | 0.82       | 0.29             |          |     |  |
| Uniform Delay, d1                 | 21.4        | 0.0          | 10.2      | 15.2    | 13.9       | 0.0              |          |     |  |
| Progression Factor                | 1.00        | 1.00         | 1.00      | 1.00    | 1.00       | 1.00             |          |     |  |
| Incremental Delay, d2             | 5.3         | 0.0          | 4.4       | 12.5    | 6.5        | 0.5              |          |     |  |
| Delay (s)                         | 26.7        | 0.0          | 14.7      | 27.7    | 20.5       | 0.5              |          |     |  |
| Level of Service                  | С           | А            | В         | С       | С          | А                |          |     |  |
| Approach Delay (s)                | 24.1        |              |           | 26.6    | 13.6       |                  |          |     |  |
| Approach LOS                      | С           |              |           | С       | В          |                  |          |     |  |
| Intersection Summary              |             |              |           |         |            |                  |          |     |  |
| HCM 2000 Control Delay            |             |              | 20.1      | H       | CM 2000    | Level of Service | <u>;</u> | С   |  |
| HCM 2000 Volume to Capa           | acity ratio |              | 0.83      |         |            |                  |          |     |  |
| Actuated Cycle Length (s)         |             |              | 75.2      |         | um of lost |                  |          | 8.0 |  |
| Intersection Capacity Utilization | ation       |              | 85.9%     | IC      | U Level o  | of Service       |          | E   |  |
| Analysis Period (min)             |             |              | 15        |         |            |                  |          |     |  |
| c Critical Lane Group             |             |              |           |         |            |                  |          |     |  |

c Critical Lane Group

|                              | ٨            | *        | •          | t       | Ļ           |              |
|------------------------------|--------------|----------|------------|---------|-------------|--------------|
| Lane Group                   | EBL          | EBR      | NBL        | NBT     | SBT         | SBR          |
| Lane Configurations          | ۲            | 1        | 1          | 1       | •           | 1            |
| Volume (vph)                 | 331          | 90       | 84         | 655     | 803         | 450          |
| Turn Type                    | NA           | Free     | Perm       | NA      | NA          | Free         |
| Protected Phases             | 4            |          |            | 2       | 6           |              |
| Permitted Phases             |              | Free     | 2          |         |             | Free         |
| Detector Phase               | 4            |          | 2          | 2       | 6           |              |
| Switch Phase                 |              |          |            |         |             |              |
| Minimum Initial (s)          | 12.0         |          | 30.0       | 30.0    | 30.0        |              |
| Minimum Split (s)            | 33.0         |          | 37.0       | 37.0    | 37.0        |              |
| Total Split (s)              | 33.0         |          | 52.0       | 52.0    | 52.0        |              |
| Total Split (%)              | 38.8%        |          | 61.2%      | 61.2%   | 61.2%       |              |
| Yellow Time (s)              | 5.0          |          | 5.0        | 5.0     | 5.0         |              |
| All-Red Time (s)             | 2.0          |          | 2.0        | 2.0     | 2.0         |              |
| Lost Time Adjust (s)         | -3.0         |          | -3.0       | -3.0    | -3.0        |              |
| Total Lost Time (s)          | 4.0          |          | 4.0        | 4.0     | 4.0         |              |
| Lead/Lag                     |              |          |            |         |             |              |
| Lead-Lag Optimize?           |              |          |            |         |             |              |
| Recall Mode                  | None         |          | Min        | Min     | Min         |              |
| Act Effct Green (s)          | 25.8         | 79.3     | 45.3       | 45.3    | 45.3        | 79.3         |
| Actuated g/C Ratio           | 0.33         | 1.00     | 0.57       | 0.57    | 0.57        | 1.00         |
| v/c Ratio                    | 0.70         | 0.07     | 0.82       | 0.75    | 0.89        | 0.35         |
| Control Delay                | 32.4         | 0.1      | 69.8       | 19.2    | 28.7        | 0.7          |
| Queue Delay                  | 0.0          | 0.0      | 0.0        | 0.0     | 0.0         | 0.0          |
| Total Delay                  | 32.4         | 0.1      | 69.8       | 19.2    | 28.7        | 0.7          |
| LOS                          | С            | А        | E          | В       | С           | А            |
| Approach Delay               | 25.5         |          |            | 25.0    | 18.6        |              |
| Approach LOS                 | С            |          |            | С       | В           |              |
| Intersection Summary         |              |          |            |         |             |              |
| Cycle Length: 85             |              |          |            |         |             |              |
| Actuated Cycle Length: 79.   | .3           |          |            |         |             |              |
| Natural Cycle: 80            |              |          |            |         |             |              |
| Control Type: Actuated-Un    | coordinated  |          |            |         |             |              |
| Maximum v/c Ratio: 0.89      |              |          |            |         |             |              |
| Intersection Signal Delay: 2 | 21.7         |          |            | li      | ntersectior | n LOS: C     |
| Intersection Capacity Utiliz | ation 96.9%  |          |            | [(      | CU Level o  | of Service I |
| Analysis Period (min) 15     |              |          |            |         |             |              |
| Culto and Dharas data        | analar De    |          | AA/        | an D '  | 104 0 1/    |              |
| Splits and Phases: 1: He     | espeler Road | i (RR24) | //wellingt | on Road | 124 & Kos   | suth Road    |

| <b>√</b> <sup>†</sup> ø2 | ▶ <sub>ø4</sub> |  |
|--------------------------|-----------------|--|
| 52 s                     | 33 s            |  |
| ↓ ø6                     |                 |  |
| 52 s                     |                 |  |

# Queues 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)

|                        | ≯     | $\mathbf{F}$ | 1     | Ť     | Ļ      | 1     |
|------------------------|-------|--------------|-------|-------|--------|-------|
| Lane Group             | EBL   | EBR          | NBL   | NBT   | SBT    | SBR   |
| Lane Group Flow (vph)  | 368   | 100          | 93    | 728   | 892    | 500   |
| v/c Ratio              | 0.70  | 0.07         | 0.82  | 0.75  | 0.89   | 0.35  |
| Control Delay          | 32.4  | 0.1          | 69.8  | 19.2  | 28.7   | 0.7   |
| Queue Delay            | 0.0   | 0.0          | 0.0   | 0.0   | 0.0    | 0.0   |
| Total Delay            | 32.4  | 0.1          | 69.8  | 19.2  | 28.7   | 0.7   |
| Queue Length 50th (m)  | 53.0  | 0.0          | 12.0  | 87.0  | 124.2  | 0.0   |
| Queue Length 95th (m)  | 84.6  | 0.0          | #43.2 | 135.9 | #214.4 | 0.0   |
| Internal Link Dist (m) | 704.1 |              |       | 173.7 | 579.0  |       |
| Turn Bay Length (m)    |       | 30.0         | 90.0  |       |        | 120.0 |
| Base Capacity (vph)    | 596   | 1456         | 122   | 1051  | 1080   | 1428  |
| Starvation Cap Reductn | 0     | 0            | 0     | 0     | 0      | 0     |
| Spillback Cap Reductn  | 0     | 0            | 0     | 0     | 0      | 0     |
| Storage Cap Reductn    | 0     | 0            | 0     | 0     | 0      | 0     |
| Reduced v/c Ratio      | 0.62  | 0.07         | 0.76  | 0.69  | 0.83   | 0.35  |
| Intersection Summary   |       |              |       |       |        |       |

Intersection Summary

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

11/20/2013

|                               | ≯          | $\mathbf{i}$ | 1       | 1        | Ļ          | <               |   |     |
|-------------------------------|------------|--------------|---------|----------|------------|-----------------|---|-----|
| Movement                      | EBL        | EBR          | NBL     | NBT      | SBT        | SBR             |   |     |
| Lane Configurations           | 5          | 1            | ٦       | <b>↑</b> | 1          | 1               |   |     |
| Volume (vph)                  | 331        | 90           | 84      | 655      | 803        | 450             |   |     |
| Ideal Flow (vphpl)            | 1775       | 1750         | 1775    | 1900     | 1900       | 1750            |   |     |
| Total Lost time (s)           | 4.0        | 1.0          | 4.0     | 4.0      | 4.0        | 1.0             |   |     |
| Lane Util. Factor             | 1.00       | 1.00         | 1.00    | 1.00     | 1.00       | 1.00            |   |     |
| Frt                           | 1.00       | 0.85         | 1.00    | 1.00     | 1.00       | 0.85            |   |     |
| Flt Protected                 | 0.95       | 1.00         | 0.95    | 1.00     | 1.00       | 1.00            |   |     |
| Satd. Flow (prot)             | 1603       | 1456         | 1603    | 1708     | 1756       | 1428            |   |     |
| Flt Permitted                 | 0.95       | 1.00         | 0.12    | 1.00     | 1.00       | 1.00            |   |     |
| Satd. Flow (perm)             | 1603       | 1456         | 200     | 1708     | 1756       | 1428            |   |     |
| Peak-hour factor, PHF         | 0.90       | 0.90         | 0.90    | 0.90     | 0.90       | 0.90            |   |     |
| Adj. Flow (vph)               | 368        | 100          | 93      | 728      | 892        | 500             |   |     |
| RTOR Reduction (vph)          | 0          | 0            | 0       | 0        | 0          | 0               |   |     |
| Lane Group Flow (vph)         | 368        | 100          | 93      | 728      | 892        | 500             |   |     |
| Heavy Vehicles (%)            | 4%         | 1%           | 4%      | 10%      | 7%         | 3%              |   |     |
| Turn Type                     | NA         | Free         | Perm    | NA       | NA         | Free            |   |     |
| Protected Phases              | 4          | 1100         | 1 01111 | 2        | 6          | 1100            |   |     |
| Permitted Phases              | ·          | Free         | 2       | _        |            | Free            |   |     |
| Actuated Green, G (s)         | 22.8       | 79.1         | 42.3    | 42.3     | 42.3       | 79.1            |   |     |
| Effective Green, g (s)        | 25.8       | 79.1         | 45.3    | 45.3     | 45.3       | 79.1            |   |     |
| Actuated g/C Ratio            | 0.33       | 1.00         | 0.57    | 0.57     | 0.57       | 1.00            |   |     |
| Clearance Time (s)            | 7.0        |              | 7.0     | 7.0      | 7.0        |                 |   |     |
| Vehicle Extension (s)         | 5.0        |              | 5.0     | 5.0      | 5.0        |                 |   |     |
| Lane Grp Cap (vph)            | 522        | 1456         | 114     | 978      | 1005       | 1428            |   |     |
| v/s Ratio Prot                | c0.23      |              |         | 0.43     | c0.51      |                 |   |     |
| v/s Ratio Perm                |            | 0.07         | 0.47    |          | -          | 0.35            |   |     |
| v/c Ratio                     | 0.70       | 0.07         | 0.82    | 0.74     | 0.89       | 0.35            |   |     |
| Uniform Delay, d1             | 23.3       | 0.0          | 13.6    | 12.6     | 14.7       | 0.0             |   |     |
| Progression Factor            | 1.00       | 1.00         | 1.00    | 1.00     | 1.00       | 1.00            |   |     |
| Incremental Delay, d2         | 5.4        | 0.1          | 38.0    | 3.7      | 10.3       | 0.7             |   |     |
| Delay (s)                     | 28.7       | 0.1          | 51.5    | 16.3     | 25.0       | 0.7             |   |     |
| Level of Service              | С          | А            | D       | В        | С          | А               |   |     |
| Approach Delay (s)            | 22.6       |              |         | 20.3     | 16.2       |                 |   |     |
| Approach LOS                  | С          |              |         | С        | В          |                 |   |     |
| Intersection Summary          |            |              |         |          |            |                 |   |     |
| HCM 2000 Control Delay        |            |              | 18.6    | H        | CM 2000    | Level of Servic | e | В   |
| HCM 2000 Volume to Capa       | city ratio |              | 0.82    |          |            |                 |   |     |
| Actuated Cycle Length (s)     | -          |              | 79.1    | Si       | um of lost | time (s)        |   | 8.0 |
| Intersection Capacity Utiliza | ition      |              | 96.9%   |          |            | of Service      |   | F   |
| Analysis Period (min)         |            |              | 15      |          |            |                 |   |     |
| c Critical Lane Group         |            |              |         |          |            |                 |   |     |

c Critical Lane Group

Appendix D Future (2020) Background Traffic Synchro Capacity Analysis

|                               | ٦           | $\mathbf{r}$ | 1        | 1        | ţ           | 1          |
|-------------------------------|-------------|--------------|----------|----------|-------------|------------|
| Lane Group                    | EBL         | EBR          | NBL      | NBT      | SBT         | SBR        |
| Lane Configurations           | ۲           | 1            | 1        | <b>†</b> | 1           | 1          |
| Volume (vph)                  | 442         | 48           | 84       | 993      | 902         | 471        |
| Turn Type                     | NA          | Free         | pm+pt    | NA       | NA          | Free       |
| Protected Phases              | 4           |              | 5        | 2        | 6           |            |
| Permitted Phases              |             | Free         | 2        |          |             | Free       |
| Detector Phase                | 4           |              | 5        | 2        | 6           |            |
| Switch Phase                  |             |              |          |          |             |            |
| Minimum Initial (s)           | 12.0        |              | 5.0      | 30.0     | 30.0        |            |
| Minimum Split (s)             | 33.0        |              | 9.0      | 37.0     | 37.0        |            |
| Total Split (s)               | 40.0        |              | 9.0      | 80.0     | 71.0        |            |
| Total Split (%)               | 33.3%       |              | 7.5%     | 66.7%    | 59.2%       |            |
| Yellow Time (s)               | 5.0         |              | 3.0      | 5.0      | 5.0         |            |
| All-Red Time (s)              | 2.0         |              | 1.0      | 2.0      | 2.0         |            |
| Lost Time Adjust (s)          | -3.0        |              | 0.0      | -3.0     | -3.0        |            |
| Total Lost Time (s)           | 4.0         |              | 4.0      | 4.0      | 4.0         |            |
| Lead/Lag                      |             |              | Lead     |          | Lag         |            |
| Lead-Lag Optimize?            |             |              |          |          |             |            |
| Recall Mode                   | None        |              | None     | Min      | Min         |            |
| Act Effct Green (s)           | 36.0        | 120.0        | 76.0     | 76.0     | 67.0        | 120.0      |
| Actuated g/C Ratio            | 0.30        | 1.00         | 0.63     | 0.63     | 0.56        | 1.00       |
| v/c Ratio                     | 1.04        | 0.04         | 0.73     | 1.00     | 1.03        | 0.37       |
| Control Delay                 | 94.3        | 0.1          | 48.1     | 50.1     | 64.5        | 0.8        |
| Queue Delay                   | 0.0         | 0.0          | 0.0      | 0.0      | 0.0         | 0.0        |
| Total Delay                   | 94.3        | 0.1          | 48.1     | 50.1     | 64.5        | 0.8        |
| LOS                           | F           | А            | D        | D        | E           | А          |
| Approach Delay                | 85.1        |              |          | 50.0     | 42.7        |            |
| Approach LOS                  | F           |              |          | D        | D           |            |
| Intersection Summary          |             |              |          |          |             |            |
| Cycle Length: 120             |             |              |          |          |             |            |
| Actuated Cycle Length: 120    | )           |              |          |          |             |            |
| Natural Cycle: 110            |             |              |          |          |             |            |
| Control Type: Actuated-Unc    | coordinated |              |          |          |             |            |
| Maximum v/c Ratio: 1.04       |             |              |          |          |             |            |
| Intersection Signal Delay: 5  | 52.4        |              |          | lr       | ntersection | n LOS: D   |
| Intersection Capacity Utiliza | ation 88.7% |              |          | [(       | CU Level    | of Service |
| Analysis Period (min) 15      |             |              |          |          |             |            |
| Splits and Phases: 1: He      | speler Road | 1 (RR24)     | Wellingt | on Road  | 124 & Ko    | ssuth Road |

### Splits and Phases: 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)

|           | <b>→</b> <sub>Ø4</sub> |
|-----------|------------------------|
| 80 s      | 40 s                   |
| ★ ø5 ¥ ø6 |                        |
| 9 s 71 s  |                        |

|                        | ≯      | $\mathbf{r}$ | 1     | <b>†</b> | Ŧ      | 1     |
|------------------------|--------|--------------|-------|----------|--------|-------|
| Lane Group             | EBL    | EBR          | NBL   | NBT      | SBT    | SBR   |
| Lane Group Flow (vph)  | 491    | 53           | 93    | 1103     | 1002   | 523   |
| v/c Ratio              | 1.04   | 0.04         | 0.73  | 1.00     | 1.03   | 0.37  |
| Control Delay          | 94.3   | 0.1          | 48.1  | 50.1     | 64.5   | 0.8   |
| Queue Delay            | 0.0    | 0.0          | 0.0   | 0.0      | 0.0    | 0.0   |
| Total Delay            | 94.3   | 0.1          | 48.1  | 50.1     | 64.5   | 0.8   |
| Queue Length 50th (m)  | ~131.6 | 0.0          | 8.3   | ~255.3   | ~266.3 | 0.0   |
| Queue Length 95th (m)  | #199.1 | 0.0          | #35.1 | #366.7   | #346.7 | 0.0   |
| Internal Link Dist (m) | 704.1  |              |       | 173.7    | 579.0  |       |
| Turn Bay Length (m)    |        | 30.0         | 90.0  |          |        | 120.0 |
| Base Capacity (vph)    | 471    | 1350         | 127   | 1102     | 971    | 1401  |
| Starvation Cap Reductn | 0      | 0            | 0     | 0        | 0      | 0     |
| Spillback Cap Reductn  | 0      | 0            | 0     | 0        | 0      | 0     |
| Storage Cap Reductn    | 0      | 0            | 0     | 0        | 0      | 0     |
| Reduced v/c Ratio      | 1.04   | 0.04         | 0.73  | 1.00     | 1.03   | 0.37  |
|                        |        |              |       |          |        |       |

#### Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

11/20/2013

|                               | ٦          | $\mathbf{i}$ | 1     | 1        | Ļ         | ∢              |    |      |  |
|-------------------------------|------------|--------------|-------|----------|-----------|----------------|----|------|--|
| Movement                      | EBL        | EBR          | NBL   | NBT      | SBT       | SBR            |    |      |  |
| Lane Configurations           | 5          | 1            | 5     | <b>†</b> | 1         | 1              |    |      |  |
| Volume (vph)                  | 442        | 48           | 84    | 993      | 902       | 471            |    |      |  |
| Ideal Flow (vphpl)            | 1775       | 1750         | 1775  | 1900     | 1900      | 1750           |    |      |  |
| Total Lost time (s)           | 4.0        | 1.0          | 4.0   | 4.0      | 4.0       | 1.0            |    |      |  |
| Lane Util. Factor             | 1.00       | 1.00         | 1.00  | 1.00     | 1.00      | 1.00           |    |      |  |
| Frt                           | 1.00       | 0.85         | 1.00  | 1.00     | 1.00      | 0.85           |    |      |  |
| Flt Protected                 | 0.95       | 1.00         | 0.95  | 1.00     | 1.00      | 1.00           |    |      |  |
| Satd. Flow (prot)             | 1573       | 1350         | 1619  | 1740     | 1740      | 1401           |    |      |  |
| Flt Permitted                 | 0.95       | 1.00         | 0.06  | 1.00     | 1.00      | 1.00           |    |      |  |
| Satd. Flow (perm)             | 1573       | 1350         | 100   | 1740     | 1740      | 1401           |    |      |  |
| Peak-hour factor, PHF         | 0.90       | 0.90         | 0.90  | 0.90     | 0.90      | 0.90           |    |      |  |
| Adj. Flow (vph)               | 491        | 53           | 93    | 1103     | 1002      | 523            |    |      |  |
| RTOR Reduction (vph)          | 0          | 0            | 0     | 0        | 0         | 0              |    |      |  |
| Lane Group Flow (vph)         | 491        | 53           | 93    | 1103     | 1002      | 523            |    |      |  |
| Heavy Vehicles (%)            | 6%         | 9%           | 3%    | 8%       | 8%        | 5%             |    |      |  |
| Turn Type                     | NA         | Free         | pm+pt | NA       | NA        | Free           |    |      |  |
| Protected Phases              | 4          | TICC         | 5     | 2        | 6         | 1100           |    |      |  |
| Permitted Phases              |            | Free         | 2     | 2        | Ū         | Free           |    |      |  |
| Actuated Green, G (s)         | 33.0       | 120.0        | 73.0  | 73.0     | 64.0      | 120.0          |    |      |  |
| Effective Green, g (s)        | 36.0       | 120.0        | 73.0  | 76.0     | 67.0      | 120.0          |    |      |  |
| Actuated g/C Ratio            | 0.30       | 1.00         | 0.61  | 0.63     | 0.56      | 1.00           |    |      |  |
| Clearance Time (s)            | 7.0        | 1.00         | 4.0   | 7.0      | 7.0       | 1.00           |    |      |  |
| Vehicle Extension (s)         | 5.0        |              | 5.0   | 5.0      | 8.0       |                |    |      |  |
| Lane Grp Cap (vph)            | 471        | 1350         | 124   | 1102     | 971       | 1401           |    |      |  |
| v/s Ratio Prot                | c0.31      | 1000         | 0.03  | c0.63    | 0.58      | 1401           |    |      |  |
| v/s Ratio Perm                | 00.01      | 0.04         | 0.42  | 00.00    | 0.00      | 0.37           |    |      |  |
| v/c Ratio                     | 1.04       | 0.04         | 0.75  | 1.00     | 1.03      | 0.37           |    |      |  |
| Uniform Delay, d1             | 42.0       | 0.0          | 27.8  | 22.0     | 26.5      | 0.0            |    |      |  |
| Progression Factor            | 1.00       | 1.00         | 1.00  | 1.00     | 1.00      | 1.00           |    |      |  |
| Incremental Delay, d2         | 53.0       | 0.1          | 25.9  | 27.3     | 37.4      | 0.8            |    |      |  |
| Delay (s)                     | 95.0       | 0.1          | 53.7  | 49.3     | 63.9      | 0.8            |    |      |  |
| Level of Service              | F          | A            | D     | D        | E         | A              |    |      |  |
| Approach Delay (s)            | 85.7       |              | _     | 49.7     | 42.2      |                |    |      |  |
| Approach LOS                  | F          |              |       | D        | D         |                |    |      |  |
| Intersection Summary          |            |              |       |          |           |                |    |      |  |
| HCM 2000 Control Delay        |            |              | 52.2  | H        | CM 2000   | Level of Servi | ce | D    |  |
| HCM 2000 Volume to Capa       | city ratio |              | 1.05  |          |           |                |    |      |  |
| Actuated Cycle Length (s)     | -          |              | 120.0 | S        | um of los | t time (s)     |    | 12.0 |  |
| Intersection Capacity Utiliza | ation      |              | 88.7% |          |           | of Service     |    | E    |  |
| Analysis Period (min)         |            |              | 15    |          |           |                |    |      |  |
| c Critical Lane Group         |            |              |       |          |           |                |    |      |  |

|                               | ٦           | $\mathbf{i}$      | 1         | 1        | ţ           | 4          |
|-------------------------------|-------------|-------------------|-----------|----------|-------------|------------|
| Lane Group                    | EBL         | EBR               | NBL       | NBT      | SBT         | SBR        |
| Lane Configurations           | ሻ           | 1                 | ۲         | <b>†</b> | 1           | 1          |
| Volume (vph)                  | 422         | 115               | 107       | 836      | 1024        | 574        |
| Turn Type                     | NA          | Free              | pm+pt     | NA       | NA          | Free       |
| Protected Phases              | 4           |                   | 5         | 2        | 6           |            |
| Permitted Phases              |             | Free              | 2         |          |             | Free       |
| Detector Phase                | 4           |                   | 5         | 2        | 6           |            |
| Switch Phase                  |             |                   |           |          |             |            |
| Minimum Initial (s)           | 12.0        |                   | 5.0       | 30.0     | 30.0        |            |
| Minimum Split (s)             | 33.0        |                   | 9.0       | 37.0     | 37.0        |            |
| Total Split (s)               | 36.0        |                   | 9.0       | 84.0     | 75.0        |            |
| Total Split (%)               | 30.0%       |                   | 7.5%      | 70.0%    | 62.5%       |            |
| Yellow Time (s)               | 5.0         |                   | 3.0       | 5.0      | 5.0         |            |
| All-Red Time (s)              | 2.0         |                   | 1.0       | 2.0      | 2.0         |            |
| Lost Time Adjust (s)          | -3.0        |                   | 0.0       | -3.0     | -3.0        |            |
| Total Lost Time (s)           | 4.0         |                   | 4.0       | 4.0      | 4.0         |            |
| Lead/Lag                      |             |                   | Lead      |          | Lag         |            |
| Lead-Lag Optimize?            |             |                   |           |          |             |            |
| Recall Mode                   | None        |                   | None      | Min      | Min         |            |
| Act Effct Green (s)           | 32.0        | 120.0             | 80.0      | 80.0     | 71.0        | 120.0      |
| Actuated g/C Ratio            | 0.27        | 1.00              | 0.67      | 0.67     | 0.59        | 1.00       |
| v/c Ratio                     | 1.10        | 0.09              | 0.94      | 0.82     | 1.10        | 0.45       |
| Control Delay                 | 114.4       | 0.1               | 89.3      | 22.1     | 83.5        | 1.0        |
| Queue Delay                   | 0.0         | 0.0               | 0.0       | 0.0      | 0.0         | 0.0        |
| Total Delay                   | 114.4       | 0.1               | 89.3      | 22.1     | 83.5        | 1.0        |
| LOS                           | F           | А                 | F         | С        | F           | А          |
| Approach Delay                | 89.9        |                   |           | 29.8     | 53.8        |            |
| Approach LOS                  | F           |                   |           | С        | D           |            |
| Intersection Summary          |             |                   |           |          |             |            |
| Cycle Length: 120             |             |                   |           |          |             |            |
| Actuated Cycle Length: 120    | C           |                   |           |          |             |            |
| Natural Cycle: 120            |             |                   |           |          |             |            |
| Control Type: Actuated-Une    | coordinated |                   |           |          |             |            |
| Maximum v/c Ratio: 1.10       |             |                   |           |          |             |            |
| Intersection Signal Delay: 5  | 52.8        |                   |           | I        | ntersection | n LOS: D   |
| Intersection Capacity Utiliza | ation 95.3% |                   |           | [(       | CU Level    | of Service |
| Analysis Period (min) 15      |             |                   |           |          |             |            |
| Splits and Phases: 1: He      | espeler Roa | ብ ( <u>R</u> Rን/ነ | /Wellingt | on Road  | 174 & Ko    | ssuth Road |

#### Splits and Phases: 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)

|           | ▶ <sub>ø4</sub> |  |
|-----------|-----------------|--|
| 84 s      | 36 s            |  |
| ◆ ø5 ↓ ø6 |                 |  |
| 9 s 75 s  |                 |  |

|                        | ٦      | $\mathbf{r}$ | 1     | <b>†</b> | Ŧ      | 1     |
|------------------------|--------|--------------|-------|----------|--------|-------|
| Lane Group             | EBL    | EBR          | NBL   | NBT      | SBT    | SBR   |
| Lane Group Flow (vph)  | 469    | 128          | 119   | 929      | 1138   | 638   |
| v/c Ratio              | 1.10   | 0.09         | 0.94  | 0.82     | 1.10   | 0.45  |
| Control Delay          | 114.4  | 0.1          | 89.3  | 22.1     | 83.5   | 1.0   |
| Queue Delay            | 0.0    | 0.0          | 0.0   | 0.0      | 0.0    | 0.0   |
| Total Delay            | 114.4  | 0.1          | 89.3  | 22.1     | 83.5   | 1.0   |
| Queue Length 50th (m)  | ~131.7 | 0.0          | 14.1  | 154.1    | ~319.0 | 0.0   |
| Queue Length 95th (m)  | #198.2 | 0.0          | #52.8 | 224.4    | #401.5 | 0.0   |
| Internal Link Dist (m) | 704.1  |              |       | 173.7    | 579.0  |       |
| Turn Bay Length (m)    |        | 30.0         | 90.0  |          |        | 120.0 |
| Base Capacity (vph)    | 427    | 1456         | 126   | 1138     | 1038   | 1428  |
| Starvation Cap Reductn | 0      | 0            | 0     | 0        | 0      | 0     |
| Spillback Cap Reductn  | 0      | 0            | 0     | 0        | 0      | 0     |
| Storage Cap Reductn    | 0      | 0            | 0     | 0        | 0      | 0     |
| Reduced v/c Ratio      | 1.10   | 0.09         | 0.94  | 0.82     | 1.10   | 0.45  |
|                        |        |              |       |          |        |       |

#### Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

11/20/2013

|                               | ٦          | $\mathbf{i}$ | 1     | 1        | ۰.        | ~               |   |      |
|-------------------------------|------------|--------------|-------|----------|-----------|-----------------|---|------|
| Movement                      | EBL        | EBR          | NBL   | NBT      | SBT       | SBR             |   |      |
| Lane Configurations           | ٢          | 1            | ٦     | <b>↑</b> | 1         | 1               |   |      |
| Volume (vph)                  | 422        | 115          | 107   | 836      | 1024      | 574             |   |      |
| Ideal Flow (vphpl)            | 1775       | 1750         | 1775  | 1900     | 1900      | 1750            |   |      |
| Total Lost time (s)           | 4.0        | 1.0          | 4.0   | 4.0      | 4.0       | 1.0             |   |      |
| Lane Util. Factor             | 1.00       | 1.00         | 1.00  | 1.00     | 1.00      | 1.00            |   |      |
| Frt                           | 1.00       | 0.85         | 1.00  | 1.00     | 1.00      | 0.85            |   |      |
| Flt Protected                 | 0.95       | 1.00         | 0.95  | 1.00     | 1.00      | 1.00            |   |      |
| Satd. Flow (prot)             | 1603       | 1456         | 1603  | 1708     | 1756      | 1428            |   |      |
| Flt Permitted                 | 0.95       | 1.00         | 0.06  | 1.00     | 1.00      | 1.00            |   |      |
| Satd. Flow (perm)             | 1603       | 1456         | 94    | 1708     | 1756      | 1428            |   |      |
| Peak-hour factor, PHF         | 0.90       | 0.90         | 0.90  | 0.90     | 0.90      | 0.90            |   |      |
| Adj. Flow (vph)               | 469        | 128          | 119   | 929      | 1138      | 638             |   |      |
| RTOR Reduction (vph)          | 0          | 0            | 0     | 0        | 0         | 0               |   |      |
| Lane Group Flow (vph)         | 469        | 128          | 119   | 929      | 1138      | 638             |   |      |
| Heavy Vehicles (%)            | 4%         | 1%           | 4%    | 10%      | 7%        | 3%              |   |      |
| Turn Type                     | NA         | Free         | pm+pt | NA       | NA        | Free            |   |      |
| Protected Phases              | 4          | 1100         | 5     | 2        | 6         | 1100            |   |      |
| Permitted Phases              |            | Free         | 2     | -        | Ū         | Free            |   |      |
| Actuated Green, G (s)         | 29.0       | 120.0        | 77.0  | 77.0     | 68.0      | 120.0           |   |      |
| Effective Green, g (s)        | 32.0       | 120.0        | 77.0  | 80.0     | 71.0      | 120.0           |   |      |
| Actuated g/C Ratio            | 0.27       | 1.00         | 0.64  | 0.67     | 0.59      | 1.00            |   |      |
| Clearance Time (s)            | 7.0        |              | 4.0   | 7.0      | 7.0       |                 |   |      |
| Vehicle Extension (s)         | 5.0        |              | 5.0   | 5.0      | 5.0       |                 |   |      |
| Lane Grp Cap (vph)            | 427        | 1456         | 123   | 1138     | 1038      | 1428            |   |      |
| v/s Ratio Prot                | c0.29      |              | 0.04  | c0.54    | c0.65     |                 |   |      |
| v/s Ratio Perm                |            | 0.09         | 0.58  |          |           | 0.45            |   |      |
| v/c Ratio                     | 1.10       | 0.09         | 0.97  | 0.82     | 1.10      | 0.45            |   |      |
| Uniform Delay, d1             | 44.0       | 0.0          | 35.0  | 14.6     | 24.5      | 0.0             |   |      |
| Progression Factor            | 1.00       | 1.00         | 1.00  | 1.00     | 1.00      | 1.00            |   |      |
| Incremental Delay, d2         | 72.9       | 0.1          | 71.2  | 5.2      | 58.1      | 1.0             |   |      |
| Delay (s)                     | 116.9      | 0.1          | 106.2 | 19.9     | 82.6      | 1.0             |   |      |
| Level of Service              | F          | А            | F     | В        | F         | А               |   |      |
| Approach Delay (s)            | 91.8       |              |       | 29.7     | 53.3      |                 |   |      |
| Approach LOS                  | F          |              |       | С        | D         |                 |   |      |
| Intersection Summary          |            |              |       |          |           |                 |   |      |
| HCM 2000 Control Delay        |            |              | 52.8  | Н        | CM 2000   | Level of Servio | e | D    |
| HCM 2000 Volume to Capa       | city ratio |              | 1.09  |          |           |                 |   |      |
| Actuated Cycle Length (s)     |            |              | 120.0 | S        | um of los | t time (s)      |   | 12.0 |
| Intersection Capacity Utiliza | ation      |              | 95.3% | IC       | CU Level  | of Service      |   | F    |
| Analysis Period (min)         |            |              | 15    |          |           |                 |   |      |
| c Critical Lane Group         |            |              |       |          |           |                 |   |      |

| ∕            | $\mathbf{F}$                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>†</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBL          | EBR                                                                                 | NBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1            | 1                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>^</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>†</b> †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 442          | 48                                                                                  | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NA           | Free                                                                                | pm+pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4            |                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | Free                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4            |                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12.0         |                                                                                     | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 33.0         |                                                                                     | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                     | 11.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5.0          |                                                                                     | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.0          |                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -3.0         |                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.0          |                                                                                     | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                     | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| None         |                                                                                     | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | 76.8                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | 1.00                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | Α                                                                                   | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| С            |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5.8          |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ncoordinated |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| zation 66.2% |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CU Level o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | EBL<br>442<br>NA<br>4<br>12.0<br>33.0<br>34.0<br>42.5%<br>5.0<br>2.0<br>-3.0<br>4.0 | EBL       EBR         442       48         NA       Free         4       Free         5.0       2.0         -3.0       4.0         8.5       76.8         0.37       1.00         0.84       0.04         37.8       0.1         0.0       A         34.1       C         5.8       S.8         hcoordinated       H8.2 | EBL         EBR         NBL           442         48         84           NA         Free         pm+pt           4         5         Free         2           4         5         Free         2           4         5         5           12.0         5.0         33.0         9.0           34.0         9.0         34.0         9.0           42.5%         11.3%         5.0         3.0           2.0         10.0         3.0         2.0           4.0         4.0         Lead         Lead           None         None         2.0         1.0           -3.0         0.0         4.0         Lead           None         None         2.0         3.7           0.0         0.40         0.44         37.8         0.1         16.5           0.0         0.0         0.0         37.8         0.1         16.5           D         A         B         34.1         C         5.8           5.8         5.8         5.8         5.8         5.8         5.8 | EBL         EBR         NBL         NBT           442         48         84         993           NA         Free         pm+pt         NA           4         5         2           Free         2         -           4         5         2           4         5         2           4         5         2           4         5         2           5         2         -           12.0         5.0         30.0           33.0         9.0         37.0           34.0         9.0         46.0           42.5%         11.3%         57.5%           5.0         3.0         5.0           2.0         1.0         2.0           -3.0         0.0         -3.0           4.0         4.0         4.0           Lead         -         -           None         Nin         28.5           76.8         40.2         40.2           0.37         1.00         0.52           0.84         0.04         0.44           0.0         0.0         0.0           37.8 | EBL         EBR         NBL         NBT         SBT           1         1         1         1         1         1           442         48         84         993         902           NA         Free         pm+pt         NA         NA           4         5         2         6           Free         2         -         -           4         5         2         6           12.0         5.0         30.0         30.0           33.0         9.0         37.0         37.0           34.0         9.0         46.0         37.0           34.0         9.0         46.0         37.0           34.0         9.0         46.0         37.0           32.0         10.0         2.0         2.0           -3.0         0.0         -3.0         -3.0           2.0         1.0         2.0         2.0           -3.0         0.0         -3.0         -3.0           2.0         1.0         2.0         2.0           -3.0         0.0         0.52         0.52         0.43           0.8         0.1         16.5 |

#### Splits and Phases: 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)



### Queues 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)

|                        | ٦      | $\mathbf{r}$ | 1    | 1     | ↓     | 1     |
|------------------------|--------|--------------|------|-------|-------|-------|
| Lane Group             | EBL    | EBR          | NBL  | NBT   | SBT   | SBR   |
| Lane Group Flow (vph)  | 491    | 53           | 93   | 1103  | 1002  | 523   |
| v/c Ratio              | 0.84   | 0.04         | 0.44 | 0.64  | 0.70  | 0.37  |
| Control Delay          | 37.8   | 0.1          | 16.5 | 15.4  | 22.0  | 0.8   |
| Queue Delay            | 0.0    | 0.0          | 0.0  | 0.0   | 0.0   | 0.0   |
| Total Delay            | 37.8   | 0.1          | 16.5 | 15.4  | 22.0  | 0.8   |
| Queue Length 50th (m)  | 69.8   | 0.0          | 7.0  | 62.0  | 69.0  | 0.0   |
| Queue Length 95th (m)  | #124.1 | 0.0          | 14.3 | 82.6  | 92.3  | 0.0   |
| Internal Link Dist (m) | 704.1  |              |      | 173.7 | 579.0 |       |
| Turn Bay Length (m)    |        | 30.0         | 90.0 |       |       | 120.0 |
| Base Capacity (vph)    | 619    | 1350         | 209  | 1822  | 1432  | 1401  |
| Starvation Cap Reductn | 0      | 0            | 0    | 0     | 0     | 0     |
| Spillback Cap Reductn  | 0      | 0            | 0    | 0     | 0     | 0     |
| Storage Cap Reductn    | 0      | 0            | 0    | 0     | 0     | 0     |
| Reduced v/c Ratio      | 0.79   | 0.04         | 0.44 | 0.61  | 0.70  | 0.37  |
| Intersection Summary   |        |              |      |       |       |       |

#### Intersection Summary

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

11/20/2013

|                               | ≯          | $\mathbf{\hat{z}}$ | 1     | 1          | ţ          | <                |          |      |
|-------------------------------|------------|--------------------|-------|------------|------------|------------------|----------|------|
| Movement                      | EBL        | EBR                | NBL   | NBT        | SBT        | SBR              |          |      |
| Lane Configurations           | ٦          | 1                  | 5     | <b>†</b> † | <b>††</b>  | 1                |          |      |
| Volume (vph)                  | 442        | 48                 | 84    | 993        | 902        | 471              |          |      |
| Ideal Flow (vphpl)            | 1775       | 1750               | 1775  | 1900       | 1900       | 1750             |          |      |
| Total Lost time (s)           | 4.0        | 1.0                | 4.0   | 4.0        | 4.0        | 1.0              |          |      |
| Lane Util. Factor             | 1.00       | 1.00               | 1.00  | 0.95       | 0.95       | 1.00             |          |      |
| Frt                           | 1.00       | 0.85               | 1.00  | 1.00       | 1.00       | 0.85             |          |      |
| Flt Protected                 | 0.95       | 1.00               | 0.95  | 1.00       | 1.00       | 1.00             |          |      |
| Satd. Flow (prot)             | 1573       | 1350               | 1619  | 3305       | 3305       | 1401             |          |      |
| Flt Permitted                 | 0.95       | 1.00               | 0.13  | 1.00       | 1.00       | 1.00             |          |      |
| Satd. Flow (perm)             | 1573       | 1350               | 226   | 3305       | 3305       | 1401             |          |      |
| Peak-hour factor, PHF         | 0.90       | 0.90               | 0.90  | 0.90       | 0.90       | 0.90             |          |      |
| Adj. Flow (vph)               | 491        | 53                 | 93    | 1103       | 1002       | 523              |          |      |
| RTOR Reduction (vph)          | 0          | 0                  | 0     | 0          | 0          | 0                |          |      |
| Lane Group Flow (vph)         | 491        | 53                 | 93    | 1103       | 1002       | 523              |          |      |
| Heavy Vehicles (%)            | 6%         | 9%                 | 3%    | 8%         | 8%         | 5%               |          |      |
| Turn Type                     | NA         | Free               | pm+pt | NA         | NA         | Free             |          |      |
| Protected Phases              | 4          | 1100               | 5     | 2          | 6          |                  |          |      |
| Permitted Phases              | •          | Free               | 2     | -          | Ū          | Free             |          |      |
| Actuated Green, G (s)         | 25.5       | 77.5               | 38.0  | 38.0       | 30.2       | 77.5             |          |      |
| Effective Green, g (s)        | 28.5       | 77.5               | 38.0  | 41.0       | 33.2       | 77.5             |          |      |
| Actuated g/C Ratio            | 0.37       | 1.00               | 0.49  | 0.53       | 0.43       | 1.00             |          |      |
| Clearance Time (s)            | 7.0        |                    | 4.0   | 7.0        | 7.0        |                  |          |      |
| Vehicle Extension (s)         | 5.0        |                    | 5.0   | 5.0        | 5.0        |                  |          |      |
| Lane Grp Cap (vph)            | 578        | 1350               | 179   | 1748       | 1415       | 1401             |          |      |
| v/s Ratio Prot                | c0.31      |                    | 0.03  | c0.33      | c0.30      |                  |          |      |
| v/s Ratio Perm                |            | 0.04               | 0.23  |            |            | 0.37             |          |      |
| v/c Ratio                     | 0.85       | 0.04               | 0.52  | 0.63       | 0.71       | 0.37             |          |      |
| Uniform Delay, d1             | 22.5       | 0.0                | 13.4  | 12.9       | 18.2       | 0.0              |          |      |
| Progression Factor            | 1.00       | 1.00               | 1.00  | 1.00       | 1.00       | 1.00             |          |      |
| Incremental Delay, d2         | 12.3       | 0.1                | 5.0   | 1.0        | 2.1        | 0.8              |          |      |
| Delay (s)                     | 34.8       | 0.1                | 18.4  | 13.9       | 20.2       | 0.8              |          |      |
| Level of Service              | С          | А                  | В     | В          | С          | А                |          |      |
| Approach Delay (s)            | 31.5       |                    |       | 14.3       | 13.6       |                  |          |      |
| Approach LOS                  | С          |                    |       | В          | В          |                  |          |      |
| Intersection Summary          |            |                    |       |            |            |                  |          |      |
| HCM 2000 Control Delay        |            |                    | 16.8  | Н          | CM 2000    | Level of Service | <u>;</u> | В    |
| HCM 2000 Volume to Capa       | city ratio |                    | 0.78  |            |            |                  |          |      |
| Actuated Cycle Length (s)     |            |                    | 77.5  | S          | um of lost | t time (s)       |          | 12.0 |
| Intersection Capacity Utiliza | ition      |                    | 66.2% |            |            | of Service       |          | С    |
| Analysis Period (min)         |            |                    | 15    |            |            |                  |          |      |
| c Critical Lane Group         |            |                    |       |            |            |                  |          |      |

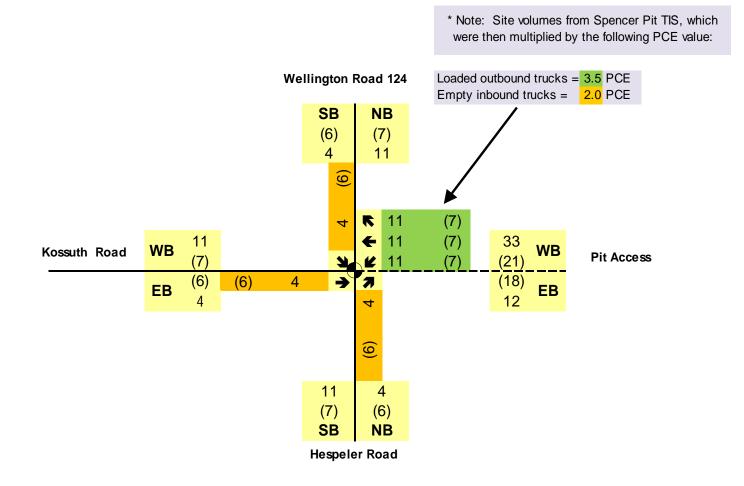
|                              | ٦             | $\mathbf{F}$ | •         | Ť        | Ļ           | ∢          |
|------------------------------|---------------|--------------|-----------|----------|-------------|------------|
| Lane Group                   | EBL           | EBR          | NBL       | NBT      | SBT         | SBR        |
| Lane Configurations          | 1             | 1            | <u>۲</u>  | <u></u>  | <u>†</u> †  | 1          |
| Volume (vph)                 | 422           | 115          | 107       | 836      | 1024        | 574        |
| Turn Type                    | NA            | Free         | pm+pt     | NA       | NA          | Free       |
| Protected Phases             | 4             |              | 5         | 2        | 6           |            |
| Permitted Phases             |               | Free         | 2         |          |             | Free       |
| Detector Phase               | 4             |              | 5         | 2        | 6           |            |
| Switch Phase                 |               |              |           |          |             |            |
| Minimum Initial (s)          | 12.0          |              | 5.0       | 30.0     | 30.0        |            |
| Minimum Split (s)            | 33.0          |              | 9.0       | 37.0     | 37.0        |            |
| Total Split (s)              | 33.0          |              | 9.0       | 47.0     | 38.0        |            |
| Total Split (%)              | 41.3%         |              | 11.3%     | 58.8%    | 47.5%       |            |
| Yellow Time (s)              | 5.0           |              | 3.0       | 5.0      | 5.0         |            |
| All-Red Time (s)             | 2.0           |              | 1.0       | 2.0      | 2.0         |            |
| Lost Time Adjust (s)         | -3.0          |              | 0.0       | -3.0     | -3.0        |            |
| Total Lost Time (s)          | 4.0           |              | 4.0       | 4.0      | 4.0         |            |
| Lead/Lag                     |               |              | Lead      |          | Lag         |            |
| Lead-Lag Optimize?           |               |              |           |          |             |            |
| Recall Mode                  | None          |              | None      | Min      | Min         |            |
| Act Effct Green (s)          | 27.4          | 76.5         | 41.0      | 41.0     | 34.1        | 76.5       |
| Actuated g/C Ratio           | 0.36          | 1.00         | 0.54      | 0.54     | 0.45        | 1.00       |
| v/c Ratio                    | 0.82          | 0.09         | 0.61      | 0.53     | 0.77        | 0.45       |
| Control Delay                | 36.2          | 0.1          | 24.6      | 13.1     | 23.2        | 1.0        |
| Queue Delay                  | 0.0           | 0.0          | 0.0       | 0.0      | 0.0         | 0.0        |
| Total Delay                  | 36.2          | 0.1          | 24.6      | 13.1     | 23.2        | 1.0        |
| LOS                          | D             | А            | С         | В        | С           | А          |
| Approach Delay               | 28.5          |              |           | 14.4     | 15.2        |            |
| Approach LOS                 | С             |              |           | В        | В           |            |
| Intersection Summary         |               |              |           |          |             |            |
| Cycle Length: 80             |               |              |           |          |             |            |
| Actuated Cycle Length: 76    | 6.5           |              |           |          |             |            |
| Natural Cycle: 80            |               |              |           |          |             |            |
| Control Type: Actuated-Ur    | ncoordinated  |              |           |          |             |            |
| Maximum v/c Ratio: 0.82      |               |              |           |          |             |            |
| Intersection Signal Delay:   | 17.3          |              |           | li       | ntersectior | n LOS: B   |
| Intersection Capacity Utiliz | zation 69.7%  |              |           | [(       | CU Level o  | of Service |
| Analysis Period (min) 15     |               |              |           |          |             |            |
| Culita and Dhasaa. 1.11      | loonalar Daad | (۱۵۵۹        | Malliment | on Doc - | 10101/      | outh Dees  |
| Splits and Phases: 1: H      | lespeler Road | (KK24)       | vveiiingt | on Road  | 124 & KOS   | suth Road  |



### Queues 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)

|                        | ٦      | $\mathbf{i}$ | 1     | 1     | Ŧ     | ~     |
|------------------------|--------|--------------|-------|-------|-------|-------|
| Lane Group             | EBL    | EBR          | NBL   | NBT   | SBT   | SBR   |
| Lane Group Flow (vph)  | 469    | 128          | 119   | 929   | 1138  | 638   |
| v/c Ratio              | 0.82   | 0.09         | 0.61  | 0.53  | 0.77  | 0.45  |
| Control Delay          | 36.2   | 0.1          | 24.6  | 13.1  | 23.2  | 1.0   |
| Queue Delay            | 0.0    | 0.0          | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Delay            | 36.2   | 0.1          | 24.6  | 13.1  | 23.2  | 1.0   |
| Queue Length 50th (m)  | 66.2   | 0.0          | 8.9   | 47.2  | 80.8  | 0.0   |
| Queue Length 95th (m)  | #117.1 | 0.0          | #21.2 | 63.7  | 107.3 | 0.0   |
| Internal Link Dist (m) | 704.1  |              |       | 173.7 | 579.0 |       |
| Turn Bay Length (m)    |        | 30.0         | 90.0  |       |       | 120.0 |
| Base Capacity (vph)    | 613    | 1456         | 196   | 1842  | 1496  | 1428  |
| Starvation Cap Reductn | 0      | 0            | 0     | 0     | 0     | 0     |
| Spillback Cap Reductn  | 0      | 0            | 0     | 0     | 0     | 0     |
| Storage Cap Reductn    | 0      | 0            | 0     | 0     | 0     | 0     |
| Reduced v/c Ratio      | 0.77   | 0.09         | 0.61  | 0.50  | 0.76  | 0.45  |
| Intersection Summary   |        |              |       |       |       |       |

Intersection Summary


# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

11/20/2013

|                               | ٦          | $\mathbf{i}$ | 1     | 1          | ۰.         | 1                |   |      |
|-------------------------------|------------|--------------|-------|------------|------------|------------------|---|------|
| Movement                      | EBL        | EBR          | NBL   | NBT        | SBT        | SBR              |   |      |
| Lane Configurations           | ٦          | 1            | ٢     | <b>†</b> † | <b>†</b> † | 1                |   |      |
| Volume (vph)                  | 422        | 115          | 107   | 836        | 1024       | 574              |   |      |
| Ideal Flow (vphpl)            | 1775       | 1750         | 1775  | 1900       | 1900       | 1750             |   |      |
| Total Lost time (s)           | 4.0        | 1.0          | 4.0   | 4.0        | 4.0        | 1.0              |   |      |
| Lane Util. Factor             | 1.00       | 1.00         | 1.00  | 0.95       | 0.95       | 1.00             |   |      |
| Frt                           | 1.00       | 0.85         | 1.00  | 1.00       | 1.00       | 0.85             |   |      |
| Flt Protected                 | 0.95       | 1.00         | 0.95  | 1.00       | 1.00       | 1.00             |   |      |
| Satd. Flow (prot)             | 1603       | 1456         | 1603  | 3245       | 3336       | 1428             |   |      |
| Flt Permitted                 | 0.95       | 1.00         | 0.11  | 1.00       | 1.00       | 1.00             |   |      |
| Satd. Flow (perm)             | 1603       | 1456         | 192   | 3245       | 3336       | 1428             |   |      |
| Peak-hour factor, PHF         | 0.90       | 0.90         | 0.90  | 0.90       | 0.90       | 0.90             |   |      |
| Adj. Flow (vph)               | 469        | 128          | 119   | 929        | 1138       | 638              |   |      |
| RTOR Reduction (vph)          | 0          | 0            | 0     | 0          | 0          | 0                |   |      |
| Lane Group Flow (vph)         | 469        | 128          | 119   | 929        | 1138       | 638              |   |      |
| Heavy Vehicles (%)            | 4%         | 1%           | 4%    | 10%        | 7%         | 3%               |   |      |
| Turn Type                     | NA         | Free         | pm+pt | NA         | NA         | Free             |   |      |
| Protected Phases              | 4          |              | 5     | 2          | 6          |                  |   |      |
| Permitted Phases              |            | Free         | 2     |            | -          | Free             |   |      |
| Actuated Green, G (s)         | 24.4       | 77.3         | 38.9  | 38.9       | 31.1       | 77.3             |   |      |
| Effective Green, g (s)        | 27.4       | 77.3         | 38.9  | 41.9       | 34.1       | 77.3             |   |      |
| Actuated g/C Ratio            | 0.35       | 1.00         | 0.50  | 0.54       | 0.44       | 1.00             |   |      |
| Clearance Time (s)            | 7.0        |              | 4.0   | 7.0        | 7.0        |                  |   |      |
| Vehicle Extension (s)         | 5.0        |              | 5.0   | 5.0        | 5.0        |                  |   |      |
| Lane Grp Cap (vph)            | 568        | 1456         | 165   | 1758       | 1471       | 1428             |   |      |
| v/s Ratio Prot                | c0.29      |              | 0.04  | 0.29       | c0.34      |                  |   |      |
| v/s Ratio Perm                |            | 0.09         | 0.32  |            |            | c0.45            |   |      |
| v/c Ratio                     | 0.83       | 0.09         | 0.72  | 0.53       | 0.77       | 0.45             |   |      |
| Uniform Delay, d1             | 22.8       | 0.0          | 14.2  | 11.4       | 18.3       | 0.0              |   |      |
| Progression Factor            | 1.00       | 1.00         | 1.00  | 1.00       | 1.00       | 1.00             |   |      |
| Incremental Delay, d2         | 10.6       | 0.1          | 17.4  | 0.5        | 3.0        | 1.0              |   |      |
| Delay (s)                     | 33.4       | 0.1          | 31.6  | 11.9       | 21.4       | 1.0              |   |      |
| Level of Service              | С          | А            | С     | В          | С          | А                |   |      |
| Approach Delay (s)            | 26.3       |              |       | 14.1       | 14.1       |                  |   |      |
| Approach LOS                  | С          |              |       | В          | В          |                  |   |      |
| Intersection Summary          |            |              |       |            |            |                  |   |      |
| HCM 2000 Control Delay        |            |              | 16.2  | Н          | CM 2000    | Level of Service | 9 | В    |
| HCM 2000 Volume to Capa       | city ratio |              | 0.80  |            |            |                  |   |      |
| Actuated Cycle Length (s)     |            |              | 77.3  | S          | um of los  | t time (s)       |   | 12.0 |
| Intersection Capacity Utiliza | tion       |              | 69.7% | IC         | CU Level   | of Service       |   | С    |
| Analysis Period (min)         |            |              | 15    |            |            |                  |   |      |
| c Critical Lane Group         |            |              |       |            |            |                  |   |      |

Appendix E Future (2015) Total Traffic Synchro Capacity Analysis & Passenger Car Equivalent (PCE) Figure





Cad File No: X:\SernasTransTech\Projects\2013\13268 SPENCER PIT\Analysis\April 2014 Update\13268 Spencer Pit Figures - Apr 4-2014.dwg

Plot Date: 4 April 2014 - 10:29 AM

Plotted by: Michael Dowdall

## Timings 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access 2/26/2014

|                                 | ۶         | -      | $\mathbf{F}$ | 4     | +          | 1         | Ť        | ۲     | 1     | Ļ        | ∢    |
|---------------------------------|-----------|--------|--------------|-------|------------|-----------|----------|-------|-------|----------|------|
| Lane Group                      | EBL       | EBT    | EBR          | WBL   | WBT        | NBL       | NBT      | NBR   | SBL   | SBT      | SBR  |
| Lane Configurations             |           | र्स    | 1            |       | 4          | ሻ         | <b>↑</b> | 1     | ሻ     | <b>↑</b> | 1    |
| Volume (vph)                    | 346       | 4      | 37           | 11    | 11         | 66        | 778      | 4     | 4     | 707      | 369  |
| Turn Type                       | Perm      | NA     | Free         | Perm  | NA         | Perm      | NA       | Perm  | Perm  | NA       | Free |
| Protected Phases                |           | 4      |              |       | 8          |           | 2        |       |       | 6        |      |
| Permitted Phases                | 4         |        | Free         | 8     |            | 2         |          | 2     | 6     |          | Free |
| Detector Phase                  | 4         | 4      |              | 8     | 8          | 2         | 2        | 2     | 6     | 6        |      |
| Switch Phase                    |           |        |              |       |            |           |          |       |       |          |      |
| Minimum Initial (s)             | 12.0      | 12.0   |              | 8.0   | 8.0        | 30.0      | 30.0     | 30.0  | 30.0  | 30.0     |      |
| Minimum Split (s)               | 33.0      | 33.0   |              | 33.0  | 33.0       | 37.0      | 37.0     | 37.0  | 37.0  | 37.0     |      |
| Total Split (s)                 | 34.0      | 34.0   |              | 34.0  | 34.0       | 46.0      | 46.0     | 46.0  | 46.0  | 46.0     |      |
| Total Split (%)                 | 42.5%     | 42.5%  |              | 42.5% | 42.5%      | 57.5%     | 57.5%    | 57.5% | 57.5% | 57.5%    |      |
| Yellow Time (s)                 | 5.0       | 5.0    |              | 5.0   | 5.0        | 5.0       | 5.0      | 5.0   | 5.0   | 5.0      |      |
| All-Red Time (s)                | 2.0       | 2.0    |              | 2.0   | 2.0        | 2.0       | 2.0      | 2.0   | 2.0   | 2.0      |      |
| Lost Time Adjust (s)            |           | -3.0   |              |       | -3.0       | -3.0      | -3.0     | -3.0  | -3.0  | -3.0     |      |
| Total Lost Time (s)             |           | 4.0    |              |       | 4.0        | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      |      |
| Lead/Lag                        |           |        |              |       |            |           |          |       |       |          |      |
| Lead-Lag Optimize?              |           |        |              |       |            |           |          |       |       |          |      |
| Recall Mode                     | None      | None   |              | None  | None       | Min       | Min      | Min   | Min   | Min      |      |
| Act Effct Green (s)             |           | 30.0   | 80.0         |       | 22.4       | 42.0      | 42.0     | 42.0  | 42.0  | 42.0     | 80.0 |
| Actuated g/C Ratio              |           | 0.38   | 1.00         |       | 0.28       | 0.52      | 0.52     | 0.52  | 0.52  | 0.52     | 1.00 |
| v/c Ratio                       |           | 0.97   | 0.03         |       | 0.19       | 0.57      | 0.95     | 0.01  | 0.09  | 0.86     | 0.29 |
| Control Delay                   |           | 65.2   | 0.1          |       | 15.5       | 34.4      | 39.3     | 0.0   | 15.5  | 28.5     | 0.5  |
| Queue Delay                     |           | 0.0    | 0.0          |       | 0.0        | 0.0       | 0.0      | 0.0   | 0.0   | 0.0      | 0.0  |
| Total Delay                     |           | 65.2   | 0.1          |       | 15.5       | 34.4      | 39.3     | 0.0   | 15.5  | 28.5     | 0.5  |
| LOS                             |           | E      | А            |       | В          | С         | D        | А     | В     | С        | А    |
| Approach Delay                  |           | 58.9   |              |       | 15.5       |           | 38.8     |       |       | 18.9     |      |
| Approach LOS                    |           | E      |              |       | В          |           | D        |       |       | В        |      |
| Intersection Summary            |           |        |              |       |            |           |          |       |       |          |      |
| Cycle Length: 80                |           |        |              |       |            |           |          |       |       |          |      |
| Actuated Cycle Length: 80       |           |        |              |       |            |           |          |       |       |          |      |
| Natural Cycle: 90               |           |        |              |       |            |           |          |       |       |          |      |
| Control Type: Actuated-Unco     | ordinated | ł      |              |       |            |           |          |       |       |          |      |
| Maximum v/c Ratio: 0.97         |           |        |              |       |            |           |          |       |       |          |      |
| Intersection Signal Delay: 32   | .6        |        |              | I     | ntersectio | n LOS: C  |          |       |       |          |      |
| Intersection Capacity Utilizati | ion 94.4% | /<br>D |              | [(    | CU Level   | of Servic | e F      |       |       |          |      |
| Analysis Period (min) 15        |           |        |              |       |            |           |          |       |       |          |      |
|                                 |           |        |              |       |            |           |          |       |       |          |      |

#### Splits and Phases: 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access

|      | ø4          |
|------|-------------|
| 46 s | 34 s        |
| ø6   | <b>₩</b> ø8 |
| 46 s | 34 s        |

# Queues 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access 2/26/2014

|                        | <b>→</b> | $\mathbf{F}$ | ←     | 1     | Ť      | 1    | 1    | ţ      | ~     |
|------------------------|----------|--------------|-------|-------|--------|------|------|--------|-------|
| Lane Group             | EBT      | EBR          | WBT   | NBL   | NBT    | NBR  | SBL  | SBT    | SBR   |
| Lane Group Flow (vph)  | 388      | 41           | 36    | 73    | 864    | 4    | 4    | 786    | 410   |
| v/c Ratio              | 0.97     | 0.03         | 0.19  | 0.57  | 0.95   | 0.01 | 0.09 | 0.86   | 0.29  |
| Control Delay          | 65.2     | 0.1          | 15.5  | 34.4  | 39.3   | 0.0  | 15.5 | 28.5   | 0.5   |
| Queue Delay            | 0.0      | 0.0          | 0.0   | 0.0   | 0.0    | 0.0  | 0.0  | 0.0    | 0.0   |
| Total Delay            | 65.2     | 0.1          | 15.5  | 34.4  | 39.3   | 0.0  | 15.5 | 28.5   | 0.5   |
| Queue Length 50th (m)  | 59.6     | 0.0          | 2.4   | 7.4   | 122.0  | 0.0  | 0.3  | 102.1  | 0.0   |
| Queue Length 95th (m)  | #116.4   | 0.0          | 9.0   | #28.8 | #207.0 | 0.0  | 2.3  | #178.9 | 0.0   |
| Internal Link Dist (m) | 704.1    |              | 111.7 |       | 173.7  |      |      | 579.0  |       |
| Turn Bay Length (m)    |          | 50.0         |       | 90.0  |        | 30.0 | 30.0 |        | 120.0 |
| Base Capacity (vph)    | 401      | 1350         | 245   | 129   | 913    | 412  | 43   | 913    | 1401  |
| Starvation Cap Reductn | 0        | 0            | 0     | 0     | 0      | 0    | 0    | 0      | 0     |
| Spillback Cap Reductn  | 0        | 0            | 0     | 0     | 0      | 0    | 0    | 0      | 0     |
| Storage Cap Reductn    | 0        | 0            | 0     | 0     | 0      | 0    | 0    | 0      | 0     |
| Reduced v/c Ratio      | 0.97     | 0.03         | 0.15  | 0.57  | 0.95   | 0.01 | 0.09 | 0.86   | 0.29  |
| Intersection Summany   |          |              |       |       |        |      |      |        |       |

Intersection Summary

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

# HCM Signalized Intersection Capacity Analysis

1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access 2/26/2014

|                                   | ۲     | -     | $\mathbf{F}$ | •    | ł         | *          | •       | 1        | 1    | 1    | Ŧ        | ~    |
|-----------------------------------|-------|-------|--------------|------|-----------|------------|---------|----------|------|------|----------|------|
| Movement                          | EBL   | EBT   | EBR          | WBL  | WBT       | WBR        | NBL     | NBT      | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations               |       | र्स   | 1            |      | 4         |            | ሻ       | <b>↑</b> | 1    | ሻ    | <b>↑</b> | 1    |
| Volume (vph)                      | 346   | 4     | 37           | 11   | 11        | 11         | 66      | 778      | 4    | 4    | 707      | 369  |
| Ideal Flow (vphpl)                | 1650  | 1650  | 1750         | 1550 | 1550      | 1550       | 1775    | 1900     | 1750 | 1775 | 1900     | 1750 |
| Total Lost time (s)               |       | 4.0   | 1.0          |      | 4.0       |            | 4.0     | 4.0      | 4.0  | 4.0  | 4.0      | 1.0  |
| Lane Util. Factor                 |       | 1.00  | 1.00         |      | 1.00      |            | 1.00    | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Frt                               |       | 1.00  | 0.85         |      | 0.95      |            | 1.00    | 1.00     | 0.85 | 1.00 | 1.00     | 0.85 |
| Flt Protected                     |       | 0.95  | 1.00         |      | 0.98      |            | 0.95    | 1.00     | 1.00 | 0.95 | 1.00     | 1.00 |
| Satd. Flow (prot)                 |       | 1453  | 1350         |      | 720       |            | 1619    | 1740     | 735  | 834  | 1740     | 1401 |
| Flt Permitted                     |       | 0.70  | 1.00         |      | 0.87      |            | 0.15    | 1.00     | 1.00 | 0.10 | 1.00     | 1.00 |
| Satd. Flow (perm)                 |       | 1071  | 1350         |      | 634       |            | 247     | 1740     | 735  | 84   | 1740     | 1401 |
| Peak-hour factor, PHF             | 0.90  | 0.90  | 0.90         | 0.90 | 0.90      | 0.90       | 0.90    | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 |
| Adj. Flow (vph)                   | 384   | 4     | 41           | 12   | 12        | 12         | 73      | 864      | 4    | 4    | 786      | 410  |
| RTOR Reduction (vph)              | 0     | 0     | 0            | 0    | 8         | 0          | 0       | 0        | 2    | 0    | 0        | 0    |
| Lane Group Flow (vph)             | 0     | 388   | 41           | 0    | 29        | 0          | 73      | 864      | 2    | 4    | 786      | 410  |
| Heavy Vehicles (%)                | 6%    | 100%  | 9%           | 100% | 100%      | 100%       | 3%      | 8%       | 100% | 100% | 8%       | 5%   |
| Turn Type                         | Perm  | NA    | Free         | Perm | NA        |            | Perm    | NA       | Perm | Perm | NA       | Free |
| Protected Phases                  |       | 4     |              |      | 8         |            |         | 2        |      |      | 6        |      |
| Permitted Phases                  | 4     |       | Free         | 8    |           |            | 2       |          | 2    | 6    |          | Free |
| Actuated Green, G (s)             |       | 27.0  | 80.0         |      | 27.0      |            | 39.0    | 39.0     | 39.0 | 39.0 | 39.0     | 80.0 |
| Effective Green, g (s)            |       | 30.0  | 80.0         |      | 30.0      |            | 42.0    | 42.0     | 42.0 | 42.0 | 42.0     | 80.0 |
| Actuated g/C Ratio                |       | 0.38  | 1.00         |      | 0.38      |            | 0.52    | 0.52     | 0.52 | 0.52 | 0.52     | 1.00 |
| Clearance Time (s)                |       | 7.0   |              |      | 7.0       |            | 7.0     | 7.0      | 7.0  | 7.0  | 7.0      |      |
| Vehicle Extension (s)             |       | 5.0   |              |      | 5.0       |            | 5.0     | 5.0      | 5.0  | 5.0  | 5.0      |      |
| Lane Grp Cap (vph)                |       | 401   | 1350         |      | 237       |            | 129     | 913      | 385  | 44   | 913      | 1401 |
| v/s Ratio Prot                    |       |       |              |      |           |            |         | c0.50    |      |      | 0.45     |      |
| v/s Ratio Perm                    |       | c0.36 | 0.03         |      | 0.04      |            | 0.30    |          | 0.00 | 0.05 |          | 0.29 |
| v/c Ratio                         |       | 0.97  | 0.03         |      | 0.12      |            | 0.57    | 0.95     | 0.01 | 0.09 | 0.86     | 0.29 |
| Uniform Delay, d1                 |       | 24.5  | 0.0          |      | 16.4      |            | 12.8    | 17.9     | 9.1  | 9.5  | 16.5     | 0.0  |
| Progression Factor                |       | 1.00  | 1.00         |      | 1.00      |            | 1.00    | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Incremental Delay, d2             |       | 36.6  | 0.0          |      | 0.5       |            | 9.0     | 18.5     | 0.0  | 1.9  | 9.1      | 0.5  |
| Delay (s)                         |       | 61.2  | 0.0          |      | 16.8      |            | 21.9    | 36.4     | 9.1  | 11.4 | 25.5     | 0.5  |
| Level of Service                  |       | E     | А            |      | В         |            | С       | D        | А    | В    | С        | A    |
| Approach Delay (s)                |       | 55.3  |              |      | 16.8      |            |         | 35.2     |      |      | 17.0     |      |
| Approach LOS                      |       | E     |              |      | В         |            |         | D        |      |      | В        |      |
| Intersection Summary              |       |       |              |      |           |            |         |          |      |      |          |      |
| HCM 2000 Control Delay            |       |       | 29.9         | Н    | CM 2000   | Level of   | Service |          | С    |      |          |      |
| HCM 2000 Volume to Capacity       | ratio |       | 0.95         |      |           |            |         |          |      |      |          |      |
| Actuated Cycle Length (s)         |       |       | 80.0         |      | um of los |            |         |          | 8.0  |      |          |      |
| Intersection Capacity Utilization |       |       | 94.4%        | IC   | CU Level  | of Service | è.      |          | F    |      |          |      |
| Analysis Period (min)             |       |       | 15           |      |           |            |         |          |      |      |          |      |
| c Critical Lane Group             |       |       |              |      |           |            |         |          |      |      |          |      |

## Timings 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access 2/26/2014

| Lane Configurations         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                                          |                          | ٦          | -     | $\mathbf{\hat{z}}$ | 4     | ←        | 1         | t        | ۲     | 1     | Ļ     | -    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|-------|--------------------|-------|----------|-----------|----------|-------|-------|-------|------|
| Volume (vph)         331         6         90         7         7         84         655         66           Turn Type         Perm         NA         Free         Perm         NA         Perm         NA         Perm           Protected Phases         4         Free         8         2         2           Detector Phase         4         4         8         8         2         2           Switch Phase         4         4         8         8         2         2           Switch Phase         4         4         8         8         2         2           Switch Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lane Group               | EBL        | EBT   | EBR                | WBL   | WBT      | NBL       | NBT      | NBR   | SBL   | SBT   | SBR  |
| Turn Type         Perm         NA         Free         Perm         NA         Perm         NA         Perm           Protected Phases         4         Free         8         2         2           Detector Phase         4         4         8         2         2           Switch Phase         4         4         8         8         2         2           Switch Phase         4         4         8         8         2         2           Minimum Initial (s)         12.0         12.0         8.0         8.0         30.0         30.0         30.0           Minimum Initial (s)         38.0         38.0         38.0         38.0         38.0         37.0         37.0         37.0         37.0           Total Split (s)         38.0         38.0         38.0         38.0         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.8%         63.                                                                                                                                                                           | Lane Configurations      |            | र्भ   | 1                  |       | 4        | ሻ         | <b>†</b> | 1     | ሻ     | •     | 1    |
| Protected Phases         4         8         2           Permitted Phases         4         Free         8         2         2           Detector Phase         4         4         8         8         2         2           Switch Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Volume (vph)             | 331        |       | 90                 | 7     |          | 84        |          | 6     | 6     | 803   | 450  |
| Permitted Phases         4         Free         8         2         2           Detector Phase         4         4         8         8         2         2           Switch Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Turn Type                | Perm       | NA    | Free               | Perm  | NA       | Perm      | NA       | Perm  | Perm  | NA    | Free |
| Detector Phase         4         4         8         8         2         2         2           Switch Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Protected Phases         |            | 4     |                    |       | 8        |           | 2        |       |       | 6     |      |
| Switch Phase         Minimum Initial (s)       12.0       12.0       8.0       8.0       30.0       30.0       30.0         Minimum Split (s)       33.0       33.0       33.0       33.0       33.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.                                                                                                                                                                                                                   | Permitted Phases         | 4          |       | Free               | 8     |          | 2         |          | 2     | 6     |       | Free |
| Minimum Initial (s)       12.0       12.0       8.0       8.0       30.0       30.0       30.0         Minimum Split (s)       33.0       33.0       33.0       33.0       33.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0       37.0                                                                                                                                                                                                                 | Detector Phase           | 4          | 4     |                    | 8     | 8        | 2         | 2        | 2     | 6     | 6     |      |
| Minimum Split (s)       33.0       33.0       33.0       33.0       37.0       37.0       37.0         Total Split (s)       38.0       38.0       38.0       38.0       38.0       38.0       67.0       67.0       67.0         Total Split (s)       36.2%       36.2%       36.2%       36.2%       63.8%       63.8%       63.8%         Yellow Time (s)       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0         All-Red Time (s)       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0                                                                                                                                                                                                                                                     | Switch Phase             |            |       |                    |       |          |           |          |       |       |       |      |
| Total Split (s)       38.0       38.0       38.0       38.0       67.0       67.0       67.0         Total Split (%)       36.2%       36.2%       36.2%       36.2%       36.2%       36.2%       63.8%       63.8%       63.8%         Yellow Time (s)       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0         All-Red Time (s)       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0                                                                                                                                                                                                                                                      | Minimum Initial (s)      | 12.0       | 12.0  |                    | 8.0   | 8.0      | 30.0      | 30.0     | 30.0  | 30.0  | 30.0  |      |
| Total Split (%)       36.2%       36.2%       36.2%       36.2%       36.2%       63.8%       63.8%       63.8%         Yellow Time (s)       5.0       5.0       5.0       5.0       5.0       5.0       5.0         All-Red Time (s)       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0 </td <td>Minimum Split (s)</td> <td>33.0</td> <td>33.0</td> <td></td> <td>33.0</td> <td>33.0</td> <td>37.0</td> <td>37.0</td> <td>37.0</td> <td>37.0</td> <td>37.0</td> <td></td>                                                                       | Minimum Split (s)        | 33.0       | 33.0  |                    | 33.0  | 33.0     | 37.0      | 37.0     | 37.0  | 37.0  | 37.0  |      |
| Yellow Time (s)       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0                                                                                                                                                                                                                                                              | Total Split (s)          | 38.0       | 38.0  |                    | 38.0  | 38.0     | 67.0      | 67.0     | 67.0  | 67.0  | 67.0  |      |
| All-Red Time (s)       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0 <td>Total Split (%)</td> <td>36.2%</td> <td>36.2%</td> <td></td> <td>36.2%</td> <td>36.2%</td> <td>63.8%</td> <td>63.8%</td> <td>63.8%</td> <td>63.8%</td> <td>63.8%</td> <td></td>                                                                         | Total Split (%)          | 36.2%      | 36.2% |                    | 36.2% | 36.2%    | 63.8%     | 63.8%    | 63.8% | 63.8% | 63.8% |      |
| Lost Time Adjust (s)       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0 <td< td=""><td>Yellow Time (s)</td><td>5.0</td><td>5.0</td><td></td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td></td></td<>                                          | Yellow Time (s)          | 5.0        | 5.0   |                    | 5.0   | 5.0      | 5.0       | 5.0      | 5.0   | 5.0   | 5.0   |      |
| Total Lost Time (s)       4.0       4.0       4.0       4.0       4.0         Lead/Lag       Lead-Lag Optimize?         Recall Mode       None       None       None       Min       Min       Min         Act Effct Green (s)       34.3       99.0       20.1       56.7       56.7       56.7         Actuated g/C Ratio       0.35       1.00       0.20       0.57       0.57       0.57         Vc Ratio       0.99       0.07       0.18       0.85       0.75       0.02         Control Delay       78.6       0.1       24.2       77.4       21.1       0.0         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0         Total Delay       78.6       0.1       24.2       77.4       21.1       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 <td< td=""><td>All-Red Time (s)</td><td>2.0</td><td>2.0</td><td></td><td>2.0</td><td>2.0</td><td>2.0</td><td>2.0</td><td>2.0</td><td>2.0</td><td>2.0</td><td></td></td<>                                                                                                | All-Red Time (s)         | 2.0        | 2.0   |                    | 2.0   | 2.0      | 2.0       | 2.0      | 2.0   | 2.0   | 2.0   |      |
| Lead/Lag         Lead-Lag Optimize?         Recall Mode       None       None       None       Min       Min       Min         Act Effct Green (s)       34.3       99.0       20.1       56.7       56.7       56.7         Actuated g/C Ratio       0.35       1.00       0.20       0.57       0.57       0.57         Vic Ratio       0.35       1.00       0.20       0.57       0.57       0.57         Vic Ratio       0.99       0.07       0.18       0.85       0.75       0.02         Control Delay       78.6       0.1       24.2       77.4       21.1       0.0         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0         Costal Delay       78.6       0.1       24.2       77.4       21.1       0.0         LOS       E       A       C       E       C       A         Approach Delay       62.1       24.2       27.3       Approach LOS       E       C       C         Intersection Summary       C       C       C       C       C       C       C         Ocontrol Type: Actuated-Uncoordinated       Maximum v/c Rati                                                                                                                                                                                                                                                                                | Lost Time Adjust (s)     |            | -3.0  |                    |       | -3.0     | -3.0      | -3.0     | -3.0  | -3.0  | -3.0  |      |
| Lead-Lag Optimize?           Recall Mode         None         None         None         Min         Min         Min         Min           Act Effct Green (s)         34.3         99.0         20.1         56.7         56.7         56.7           Actuated g/C Ratio         0.35         1.00         0.20         0.57         0.57         0.57           V/c Ratio         0.99         0.07         0.18         0.85         0.75         0.02           Control Delay         78.6         0.1         24.2         77.4         21.1         0.0           Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0           Cottal Delay         78.6         0.1         24.2         77.4         21.1         0.0           Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0<                                                                                                                                                                                   | Total Lost Time (s)      |            | 4.0   |                    |       | 4.0      | 4.0       | 4.0      | 4.0   | 4.0   | 4.0   |      |
| Recall Mode         None         None         None         Min         Actuated g/C Ratio         0.35         1.00         0.20         0.57         0.57         0.57         0.57         0.57         0.57         0.02           Control Delay         78.6         0.1         24.2         77.4         21.1         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0                                                                                                                                                      | Lead/Lag                 |            |       |                    |       |          |           |          |       |       |       |      |
| Act Effct Green (s)       34.3       99.0       20.1       56.7       56.7       56.7         Actuated g/C Ratio       0.35       1.00       0.20       0.57       0.57       0.57         V/c Ratio       0.99       0.07       0.18       0.85       0.75       0.02         Control Delay       78.6       0.1       24.2       77.4       21.1       0.0         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0         Total Delay       78.6       0.1       24.2       77.4       21.1       0.0         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0         Cotal Delay       78.6       0.1       24.2       77.4       21.1       0.0         LOS       E       A       C       E       C       A         Approach Delay       62.1       24.2       27.3       Approach LOS       E       C       C         Intersection Summary       E       C       C       C       C       C       C         Vycle Length: 105       Actuated Cycle Length: 99       Natural Cycle: 90       Control Type: Actuated-Uncoordinated       Maximum v/                                                                                                                                                                                                                                                       | Lead-Lag Optimize?       |            |       |                    |       |          |           |          |       |       |       |      |
| Actuated g/C Ratio       0.35       1.00       0.20       0.57       0.57       0.57         v/c Ratio       0.99       0.07       0.18       0.85       0.75       0.02         Control Delay       78.6       0.1       24.2       77.4       21.1       0.0         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0         Total Delay       78.6       0.1       24.2       77.4       21.1       0.0         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0         Total Delay       78.6       0.1       24.2       77.4       21.1       0.0         LOS       E       A       C       E       C       A         Approach Delay       62.1       24.2       27.3       A         Approach LOS       E       C       C       C         Intersection Summary       C       C       C       C         Cycle Length: 105       Actuated Cycle: 90       V       V       V         Control Type: Actuated-Uncoordinated       Maximum v/c Ratio: 0.99       V       V       V         Intersection Signal Dela                                                                                                                                                                                                                                                                                | Recall Mode              | None       | None  |                    | None  | None     | Min       | Min      | Min   | Min   | Min   |      |
| v/c Ratio       0.99       0.07       0.18       0.85       0.75       0.02         Control Delay       78.6       0.1       24.2       77.4       21.1       0.0         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0         Total Delay       78.6       0.1       24.2       77.4       21.1       0.0         Total Delay       78.6       0.1       24.2       77.4       21.1       0.0         LOS       E       A       C       E       C       A         LOS       E       A       C       E       C       A         Approach Delay       62.1       24.2       27.3       A         Approach LOS       E       C       C       C       C         Intersection Summary       E       C       C       C       C         Cycle Length: 105       Actuated Cycle Length: 99       Natural Cycle: 90       C       C       C         Natural Cycle: 90       Control Type: Actuated-Uncoordinated       Maximum v/c Ratio: 0.99       Intersection LOS: C       E                                                                                                                                                                                                                                                                                                                                                           | Act Effct Green (s)      |            | 34.3  | 99.0               |       | 20.1     | 56.7      | 56.7     | 56.7  | 56.7  | 56.7  | 99.0 |
| Control Delay         78.6         0.1         24.2         77.4         21.1         0.0           Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                    | Actuated g/C Ratio       |            | 0.35  | 1.00               |       | 0.20     | 0.57      | 0.57     | 0.57  | 0.57  | 0.57  | 1.00 |
| Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <th< td=""><td>v/c Ratio</td><td></td><td>0.99</td><td></td><td></td><td>0.18</td><td>0.85</td><td>0.75</td><td>0.02</td><td>0.06</td><td>0.89</td><td>0.35</td></th<> | v/c Ratio                |            | 0.99  |                    |       | 0.18     | 0.85      | 0.75     | 0.02  | 0.06  | 0.89  | 0.35 |
| Total Delay       78.6       0.1       24.2       77.4       21.1       0.0         LOS       E       A       C       E       C       A         Approach Delay       62.1       24.2       27.3       A         Approach LOS       E       C       C       C         Intersection Summary       C       C       C       C         Cycle Length: 105       Actuated Cycle Length: 99       A       A       A       A       A       A       C       C       C       C       C       C       C       C       C       C       C       C       A       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C <t< td=""><td>Control Delay</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0</td><td>10.5</td><td>30.5</td><td>0.7</td></t<>                                                                                                                                                                                                     | Control Delay            |            |       |                    |       |          |           |          | 0.0   | 10.5  | 30.5  | 0.7  |
| LOSEACECAApproach Delay62.124.227.3Approach LOSECCIntersection SummaryCCCCycle Length: 105Actuated Cycle Length: 99Actuated Cycle Length: 99Natural Cycle: 90Control Type: Actuated-UncoordinatedMaximum v/c Ratio: 0.99Intersection LOS: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Queue Delay              |            |       |                    |       |          |           |          | 0.0   | 0.0   | 0.0   | 0.0  |
| Approach Delay62.124.227.3Approach LOSECCIntersection SummaryCCCycle Length: 105Actuated Cycle Length: 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |            |       |                    |       |          |           |          | 0.0   | 10.5  | 30.5  | 0.7  |
| Approach LOSECCIntersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LOS                      |            |       | А                  |       |          | E         |          | А     | В     | С     | А    |
| Intersection Summary Cycle Length: 105 Actuated Cycle Length: 99 Natural Cycle: 90 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.99 Intersection Signal Delay: 29.4 Intersection LOS: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |       |                    |       |          |           |          |       |       | 19.7  |      |
| Cycle Length: 105<br>Actuated Cycle Length: 99<br>Natural Cycle: 90<br>Control Type: Actuated-Uncoordinated<br>Maximum v/c Ratio: 0.99<br>Intersection Signal Delay: 29.4<br>Intersection LOS: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Approach LOS             |            | E     |                    |       | С        |           | С        |       |       | В     |      |
| Actuated Cycle Length: 99<br>Natural Cycle: 90<br>Control Type: Actuated-Uncoordinated<br>Maximum v/c Ratio: 0.99<br>Intersection Signal Delay: 29.4 Intersection LOS: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |            |       |                    |       |          |           |          |       |       |       |      |
| Natural Cycle: 90         Control Type: Actuated-Uncoordinated         Maximum v/c Ratio: 0.99         Intersection Signal Delay: 29.4         Intersection LOS: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |            |       |                    |       |          |           |          |       |       |       |      |
| Control Type: Actuated-Uncoordinated<br>Maximum v/c Ratio: 0.99<br>Intersection Signal Delay: 29.4 Intersection LOS: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |            |       |                    |       |          |           |          |       |       |       |      |
| Maximum v/c Ratio: 0.99<br>Intersection Signal Delay: 29.4 Intersection LOS: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |            |       |                    |       |          |           |          |       |       |       |      |
| Intersection Signal Delay: 29.4 Intersection LOS: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | oordinated | k     |                    |       |          |           |          |       |       |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |            |       |                    |       |          |           |          |       |       |       |      |
| Intersection Capacity Utilization 105.4% ICU Level of Service G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |            |       |                    |       |          |           |          |       |       |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | tion 105.4 | %     |                    | [(    | CU Level | of Servic | e G      |       |       |       |      |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analysis Period (min) 15 |            |       |                    |       |          |           |          |       |       |       |      |

#### Splits and Phases: 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access

| ≪¶ø2        | <u>_</u> ø₄    |  |
|-------------|----------------|--|
| 67 s        | 38 s           |  |
| <b>↓</b> ø6 | <b>↓</b><br>Ø8 |  |
| 67 s        | 38 s           |  |

# Queues 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access 2/26/2014

|                        | -      | $\mathbf{\hat{z}}$ | +     | 1     | 1     | 1    | 1    | Ļ      | ~     |  |
|------------------------|--------|--------------------|-------|-------|-------|------|------|--------|-------|--|
| Lane Group             | EBT    | EBR                | WBT   | NBL   | NBT   | NBR  | SBL  | SBT    | SBR   |  |
| Lane Group Flow (vph)  | 375    | 100                | 24    | 93    | 728   | 7    | 7    | 892    | 500   |  |
| v/c Ratio              | 0.99   | 0.07               | 0.18  | 0.85  | 0.75  | 0.02 | 0.06 | 0.89   | 0.35  |  |
| Control Delay          | 78.6   | 0.1                | 24.2  | 77.4  | 21.1  | 0.0  | 10.5 | 30.5   | 0.7   |  |
| Queue Delay            | 0.0    | 0.0                | 0.0   | 0.0   | 0.0   | 0.0  | 0.0  | 0.0    | 0.0   |  |
| Total Delay            | 78.6   | 0.1                | 24.2  | 77.4  | 21.1  | 0.0  | 10.5 | 30.5   | 0.7   |  |
| Queue Length 50th (m)  | ~88.4  | 0.0                | 3.1   | 14.5  | 101.7 | 0.0  | 0.6  | 145.2  | 0.0   |  |
| Queue Length 95th (m)  | #147.3 | 0.0                | 8.9   | #49.3 | 148.5 | 0.0  | 2.7  | #219.7 | 0.0   |  |
| Internal Link Dist (m) | 704.1  |                    | 111.7 |       | 173.7 |      |      | 579.0  |       |  |
| Turn Bay Length (m)    |        | 50.0               |       | 90.0  |       | 30.0 | 30.0 |        | 120.0 |  |
| Base Capacity (vph)    | 380    | 1456               | 228   | 122   | 1095  | 486  | 123  | 1125   | 1428  |  |
| Starvation Cap Reductn | 0      | 0                  | 0     | 0     | 0     | 0    | 0    | 0      | 0     |  |
| Spillback Cap Reductn  | 0      | 0                  | 0     | 0     | 0     | 0    | 0    | 0      | 0     |  |
| Storage Cap Reductn    | 0      | 0                  | 0     | 0     | 0     | 0    | 0    | 0      | 0     |  |
| Reduced v/c Ratio      | 0.99   | 0.07               | 0.11  | 0.76  | 0.66  | 0.01 | 0.06 | 0.79   | 0.35  |  |
|                        |        |                    |       |       |       |      |      |        |       |  |

#### Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

# HCM Signalized Intersection Capacity Analysis

1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access 2/26/2014

|                                   | ٨     | -     | $\mathbf{F}$ | •    | ł         | *          | <b>N</b> | 1        | 1    | 1    | Ŧ        | ~    |
|-----------------------------------|-------|-------|--------------|------|-----------|------------|----------|----------|------|------|----------|------|
| Movement                          | EBL   | EBT   | EBR          | WBL  | WBT       | WBR        | NBL      | NBT      | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations               |       | र्भ   | 1            |      | 4         |            | ሻ        | <b>↑</b> | 1    | ሻ    | <b>↑</b> | 1    |
| Volume (vph)                      | 331   | 6     | 90           | 7    | 7         | 7          | 84       | 655      | 6    | 6    | 803      | 450  |
| Ideal Flow (vphpl)                | 1650  | 1650  | 1750         | 1550 | 1550      | 1550       | 1775     | 1900     | 1750 | 1775 | 1900     | 1750 |
| Total Lost time (s)               |       | 4.0   | 1.0          |      | 4.0       |            | 4.0      | 4.0      | 4.0  | 4.0  | 4.0      | 1.0  |
| Lane Util. Factor                 |       | 1.00  | 1.00         |      | 1.00      |            | 1.00     | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Frt                               |       | 1.00  | 0.85         |      | 0.95      |            | 1.00     | 1.00     | 0.85 | 1.00 | 1.00     | 0.85 |
| Flt Protected                     |       | 0.95  | 1.00         |      | 0.98      |            | 0.95     | 1.00     | 1.00 | 0.95 | 1.00     | 1.00 |
| Satd. Flow (prot)                 |       | 1470  | 1456         |      | 720       |            | 1603     | 1708     | 735  | 834  | 1756     | 1428 |
| Flt Permitted                     |       | 0.71  | 1.00         |      | 0.88      |            | 0.11     | 1.00     | 1.00 | 0.22 | 1.00     | 1.00 |
| Satd. Flow (perm)                 |       | 1099  | 1456         |      | 645       |            | 191      | 1708     | 735  | 193  | 1756     | 1428 |
| Peak-hour factor, PHF             | 0.90  | 0.90  | 0.90         | 0.90 | 0.90      | 0.90       | 0.90     | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 |
| Adj. Flow (vph)                   | 368   | 7     | 100          | 8    | 8         | 8          | 93       | 728      | 7    | 7    | 892      | 500  |
| RTOR Reduction (vph)              | 0     | 0     | 0            | 0    | 5         | 0          | 0        | 0        | 3    | 0    | 0        | 0    |
| Lane Group Flow (vph)             | 0     | 375   | 100          | 0    | 19        | 0          | 93       | 728      | 4    | 7    | 892      | 500  |
| Heavy Vehicles (%)                | 4%    | 100%  | 1%           | 100% | 100%      | 100%       | 4%       | 10%      | 100% | 100% | 7%       | 3%   |
| Turn Type                         | Perm  | NA    | Free         | Perm | NA        |            | Perm     | NA       | Perm | Perm | NA       | Free |
| Protected Phases                  |       | 4     |              |      | 8         |            |          | 2        |      |      | 6        |      |
| Permitted Phases                  | 4     |       | Free         | 8    |           |            | 2        |          | 2    | 6    |          | Free |
| Actuated Green, G (s)             |       | 31.2  | 98.9         |      | 31.2      |            | 53.7     | 53.7     | 53.7 | 53.7 | 53.7     | 98.9 |
| Effective Green, g (s)            |       | 34.2  | 98.9         |      | 34.2      |            | 56.7     | 56.7     | 56.7 | 56.7 | 56.7     | 98.9 |
| Actuated g/C Ratio                |       | 0.35  | 1.00         |      | 0.35      |            | 0.57     | 0.57     | 0.57 | 0.57 | 0.57     | 1.00 |
| Clearance Time (s)                |       | 7.0   |              |      | 7.0       |            | 7.0      | 7.0      | 7.0  | 7.0  | 7.0      |      |
| Vehicle Extension (s)             |       | 5.0   |              |      | 5.0       |            | 5.0      | 5.0      | 5.0  | 5.0  | 5.0      |      |
| Lane Grp Cap (vph)                |       | 380   | 1456         |      | 223       |            | 109      | 979      | 421  | 110  | 1006     | 1428 |
| v/s Ratio Prot                    |       |       |              |      |           |            |          | 0.43     |      |      | c0.51    |      |
| v/s Ratio Perm                    |       | c0.34 | 0.07         |      | 0.03      |            | 0.49     |          | 0.01 | 0.04 |          | 0.35 |
| v/c Ratio                         |       | 0.99  | 0.07         |      | 0.08      |            | 0.85     | 0.74     | 0.01 | 0.06 | 0.89     | 0.35 |
| Uniform Delay, d1                 |       | 32.1  | 0.0          |      | 21.8      |            | 17.6     | 15.7     | 9.1  | 9.3  | 18.3     | 0.0  |
| Progression Factor                |       | 1.00  | 1.00         |      | 1.00      |            | 1.00     | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Incremental Delay, d2             |       | 42.5  | 0.1          |      | 0.3       |            | 47.1     | 3.7      | 0.0  | 0.5  | 10.2     | 0.7  |
| Delay (s)                         |       | 74.7  | 0.1          |      | 22.1      |            | 64.7     | 19.4     | 9.1  | 9.9  | 28.5     | 0.7  |
| Level of Service                  |       | E     | А            |      | С         |            | E        | В        | А    | А    | С        | А    |
| Approach Delay (s)                |       | 59.0  |              |      | 22.1      |            |          | 24.4     |      |      | 18.5     |      |
| Approach LOS                      |       | E     |              |      | С         |            |          | С        |      |      | В        |      |
| Intersection Summary              |       |       |              |      |           |            |          |          |      |      |          |      |
| HCM 2000 Control Delay            |       |       | 27.4         | Н    | CM 2000   | Level of   | Service  |          | С    |      |          |      |
| HCM 2000 Volume to Capacity       | ratio |       | 0.92         |      |           |            |          |          |      |      |          |      |
| Actuated Cycle Length (s)         |       |       | 98.9         | S    | um of los | t time (s) |          |          | 8.0  |      |          |      |
| Intersection Capacity Utilization |       |       | 105.4%       | IC   | CU Level  | of Service | ;        |          | G    |      |          |      |
| Analysis Period (min)             |       |       | 15           |      |           |            |          |          |      |      |          |      |
| c Critical Lane Group             |       |       |              |      |           |            |          |          |      |      |          |      |

Appendix F Future (2020) Total Traffic Synchro Capacity Analysis

## Timings 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access 2/26/2014

| Lane Group<br>Lane Configurations<br>Volume (vph)<br>Turn Type<br>Protected Phases<br>Permitted Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s) | EBL<br>442<br>Perm<br>4 | EBT<br>4<br>NA<br>4 | EBR<br>7<br>48<br>Perm | <u>WBL</u> | WBT      | NBL       | NBT   | NBR   | SBL   | SBT   | SBR   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|------------------------|------------|----------|-----------|-------|-------|-------|-------|-------|
| Volume (vph)<br>Turn Type I<br>Protected Phases<br>Permitted Phases<br>Detector Phase<br>Switch Phase                                                           | Perm<br>4               | 4<br>NA             | 48                     | 11         |          |           |       |       |       | 001   | JUK   |
| Turn Type I<br>Protected Phases<br>Permitted Phases<br>Detector Phase<br>Switch Phase                                                                           | Perm<br>4               | 4<br>NA             |                        | 11         |          | ኘ         | •     | 1     | ۳     | •     | 1     |
| Protected Phases<br>Permitted Phases<br>Detector Phase<br>Switch Phase                                                                                          | 4                       |                     | Perm                   | 11         | 11       | 84        | 993   | 4     | 4     | 902   | 471   |
| Permitted Phases<br>Detector Phase<br>Switch Phase                                                                                                              |                         | 4                   | 1 01111                | Perm       | NA       | pm+pt     | NA    | Perm  | Perm  | NA    | Perm  |
| Detector Phase<br>Switch Phase                                                                                                                                  |                         |                     |                        |            | 8        | 5         | 2     |       |       | 6     |       |
| Switch Phase                                                                                                                                                    |                         |                     | 4                      | 8          |          | 2         |       | 2     | 6     |       | 6     |
|                                                                                                                                                                 | 4                       | 4                   | 4                      | 8          | 8        | 5         | 2     | 2     | 6     | 6     | 6     |
| Minimum Initial (s)                                                                                                                                             |                         |                     |                        |            |          |           |       |       |       |       |       |
|                                                                                                                                                                 | 12.0                    | 12.0                | 12.0                   | 8.0        | 8.0      | 5.0       | 30.0  | 30.0  | 30.0  | 30.0  | 30.0  |
| Minimum Split (s)                                                                                                                                               | 33.0                    | 33.0                | 33.0                   | 33.0       | 33.0     | 9.0       | 37.0  | 37.0  | 37.0  | 37.0  | 37.0  |
| Total Split (s)                                                                                                                                                 | 48.0                    | 48.0                | 48.0                   | 48.0       | 48.0     | 9.0       | 72.0  | 72.0  | 63.0  | 63.0  | 63.0  |
| Total Split (%) 4                                                                                                                                               | 40.0%                   | 40.0%               | 40.0%                  | 40.0%      | 40.0%    | 7.5%      | 60.0% | 60.0% | 52.5% | 52.5% | 52.5% |
| Yellow Time (s)                                                                                                                                                 | 5.0                     | 5.0                 | 5.0                    | 5.0        | 5.0      | 3.0       | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   |
| All-Red Time (s)                                                                                                                                                | 2.0                     | 2.0                 | 2.0                    | 2.0        | 2.0      | 1.0       | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   |
| Lost Time Adjust (s)                                                                                                                                            |                         | -3.0                | -3.0                   |            | -3.0     | 0.0       | -3.0  | -3.0  | -3.0  | -3.0  | -3.0  |
| Total Lost Time (s)                                                                                                                                             |                         | 4.0                 | 4.0                    |            | 4.0      | 4.0       | 4.0   | 4.0   | 4.0   | 4.0   | 4.0   |
| Lead/Lag                                                                                                                                                        |                         |                     |                        |            |          | Lead      |       |       | Lag   | Lag   | Lag   |
| Lead-Lag Optimize?                                                                                                                                              |                         |                     |                        |            |          |           |       |       |       |       |       |
| Recall Mode                                                                                                                                                     | None                    | None                | None                   | None       | None     | None      | Min   | Min   | Min   | Min   | Min   |
| Act Effct Green (s)                                                                                                                                             |                         | 44.0                | 44.0                   |            | 31.0     | 68.0      | 68.0  | 68.0  | 59.0  | 59.0  | 59.0  |
| Actuated g/C Ratio                                                                                                                                              |                         | 0.37                | 0.37                   |            | 0.26     | 0.57      | 0.57  | 0.57  | 0.49  | 0.49  | 0.49  |
| v/c Ratio                                                                                                                                                       |                         | 1.26                | 0.10                   |            | 0.23     | 0.73      | 1.12  | 0.01  | 0.14  | 1.17  | 0.56  |
| Control Delay                                                                                                                                                   |                         | 171.0               | 3.3                    |            | 23.8     | 48.4      | 93.7  | 0.0   | 30.0  | 119.5 | 4.6   |
| Queue Delay                                                                                                                                                     |                         | 0.0                 | 0.0                    |            | 0.0      | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Delay                                                                                                                                                     |                         | 171.0               | 3.3                    |            | 23.8     | 48.4      | 93.7  | 0.0   | 30.0  | 119.5 | 4.6   |
| LOS                                                                                                                                                             |                         | F                   | А                      |            | С        | D         | F     | А     | С     | F     | А     |
| Approach Delay                                                                                                                                                  |                         | 154.8               |                        |            | 23.8     |           | 89.9  |       |       | 80.0  |       |
| Approach LOS                                                                                                                                                    |                         | F                   |                        |            | С        |           | F     |       |       | E     |       |
| Intersection Summary                                                                                                                                            |                         |                     |                        |            |          |           |       |       |       |       |       |
| Cycle Length: 120                                                                                                                                               |                         |                     |                        |            |          |           |       |       |       |       |       |
| Actuated Cycle Length: 120                                                                                                                                      |                         |                     |                        |            |          |           |       |       |       |       |       |
| Natural Cycle: 120                                                                                                                                              |                         |                     |                        |            |          |           |       |       |       |       |       |
| Control Type: Actuated-Uncoord                                                                                                                                  | dinated                 |                     |                        |            |          |           |       |       |       |       |       |
| Maximum v/c Ratio: 1.26                                                                                                                                         |                         |                     |                        |            |          |           |       |       |       |       |       |
| Intersection Signal Delay: 95.3                                                                                                                                 |                         |                     |                        |            |          | n LOS: F  |       |       |       |       |       |
| Intersection Capacity Utilization                                                                                                                               | n 116.5                 | %                   |                        | 10         | CU Level | of Servic | e H   |       |       |       |       |
| Analysis Period (min) 15                                                                                                                                        |                         |                     |                        |            |          |           |       |       |       |       |       |

#### Splits and Phases: 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access

|             | <b>↓</b> ø4 |
|-------------|-------------|
| 72 s        | 48 s        |
| ★ ø5 \$\$ø6 | ₩<br>ø8     |
| 9 s 63 s    | 48 s        |

# Queues 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access 2/26/2014

|                        | -      | $\mathbf{F}$ | -     | 1     | 1      | 1    | 1    | Ļ      | ~     |
|------------------------|--------|--------------|-------|-------|--------|------|------|--------|-------|
| Lane Group             | EBT    | EBR          | WBT   | NBL   | NBT    | NBR  | SBL  | SBT    | SBR   |
| Lane Group Flow (vph)  | 495    | 53           | 36    | 93    | 1103   | 4    | 4    | 1002   | 523   |
| v/c Ratio              | 1.26   | 0.10         | 0.23  | 0.73  | 1.12   | 0.01 | 0.14 | 1.17   | 0.56  |
| Control Delay          | 171.0  | 3.3          | 23.8  | 48.4  | 93.7   | 0.0  | 30.0 | 119.5  | 4.6   |
| Queue Delay            | 0.0    | 0.0          | 0.0   | 0.0   | 0.0    | 0.0  | 0.0  | 0.0    | 0.0   |
| Total Delay            | 171.0  | 3.3          | 23.8  | 48.4  | 93.7   | 0.0  | 30.0 | 119.5  | 4.6   |
| Queue Length 50th (m)  | ~154.1 | 0.0          | 3.9   | 10.1  | ~314.6 | 0.0  | 0.5  | ~296.2 | 3.8   |
| Queue Length 95th (m)  | #221.6 | 5.4          | 12.3  | #35.1 | #396.6 | 0.0  | 3.7  | #376.7 | 25.2  |
| Internal Link Dist (m) | 704.1  |              | 111.7 |       | 173.7  |      |      | 579.0  |       |
| Turn Bay Length (m)    |        | 50.0         |       | 90.0  |        | 30.0 | 30.0 |        | 120.0 |
| Base Capacity (vph)    | 392    | 541          | 219   | 127   | 986    | 432  | 29   | 855    | 939   |
| Starvation Cap Reductn | 0      | 0            | 0     | 0     | 0      | 0    | 0    | 0      | 0     |
| Spillback Cap Reductn  | 0      | 0            | 0     | 0     | 0      | 0    | 0    | 0      | 0     |
| Storage Cap Reductn    | 0      | 0            | 0     | 0     | 0      | 0    | 0    | 0      | 0     |
| Reduced v/c Ratio      | 1.26   | 0.10         | 0.16  | 0.73  | 1.12   | 0.01 | 0.14 | 1.17   | 0.56  |
|                        |        |              |       |       |        |      |      |        |       |

#### Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

# HCM Signalized Intersection Capacity Analysis

1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access 2/26/2014

|                                   | ۶       | -     | $\mathbf{r}$ | •    | +         | •         | 1       | 1        | 1    | 1    | Ļ        | ~    |
|-----------------------------------|---------|-------|--------------|------|-----------|-----------|---------|----------|------|------|----------|------|
| Movement                          | EBL     | EBT   | EBR          | WBL  | WBT       | WBR       | NBL     | NBT      | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations               |         | र्स   | 1            |      | 4         |           | ሻ       | <b>↑</b> | 1    | ሻ    | <b>↑</b> | 1    |
| Volume (vph)                      | 442     | 4     | 48           | 11   | 11        | 11        | 84      | 993      | 4    | 4    | 902      | 471  |
| Ideal Flow (vphpl)                | 1650    | 1650  | 1750         | 1550 | 1550      | 1550      | 1775    | 1900     | 1750 | 1775 | 1900     | 1750 |
| Total Lost time (s)               |         | 4.0   | 4.0          |      | 4.0       |           | 4.0     | 4.0      | 4.0  | 4.0  | 4.0      | 4.0  |
| Lane Util. Factor                 |         | 1.00  | 1.00         |      | 1.00      |           | 1.00    | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Frt                               |         | 1.00  | 0.85         |      | 0.95      |           | 1.00    | 1.00     | 0.85 | 1.00 | 1.00     | 0.85 |
| Flt Protected                     |         | 0.95  | 1.00         |      | 0.98      |           | 0.95    | 1.00     | 1.00 | 0.95 | 1.00     | 1.00 |
| Satd. Flow (prot)                 |         | 1456  | 1350         |      | 720       |           | 1619    | 1740     | 735  | 834  | 1740     | 1401 |
| Flt Permitted                     |         | 0.70  | 1.00         |      | 0.79      |           | 0.07    | 1.00     | 1.00 | 0.07 | 1.00     | 1.00 |
| Satd. Flow (perm)                 |         | 1072  | 1350         |      | 577       |           | 114     | 1740     | 735  | 60   | 1740     | 1401 |
| Peak-hour factor, PHF             | 0.90    | 0.90  | 0.90         | 0.90 | 0.90      | 0.90      | 0.90    | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 |
| Adj. Flow (vph)                   | 491     | 4     | 53           | 12   | 12        | 12        | 93      | 1103     | 4    | 4    | 1002     | 523  |
| RTOR Reduction (vph)              | 0       | 0     | 34           | 0    | 8         | 0         | 0       | 0        | 2    | 0    | 0        | 251  |
| Lane Group Flow (vph)             | 0       | 495   | 19           | 0    | 28        | 0         | 93      | 1103     | 2    | 4    | 1002     | 272  |
| Heavy Vehicles (%)                | 6%      | 100%  | 9%           | 100% | 100%      | 100%      | 3%      | 8%       | 100% | 100% | 8%       | 5%   |
| Turn Type                         | Perm    | NA    | Perm         | Perm | NA        |           | pm+pt   | NA       | Perm | Perm | NA       | Perm |
| Protected Phases                  |         | 4     |              |      | 8         |           | 5       | 2        |      |      | 6        |      |
| Permitted Phases                  | 4       |       | 4            | 8    |           |           | 2       |          | 2    | 6    |          | 6    |
| Actuated Green, G (s)             |         | 41.0  | 41.0         |      | 41.0      |           | 65.0    | 65.0     | 65.0 | 56.0 | 56.0     | 56.0 |
| Effective Green, g (s)            |         | 44.0  | 44.0         |      | 44.0      |           | 65.0    | 68.0     | 68.0 | 59.0 | 59.0     | 59.0 |
| Actuated g/C Ratio                |         | 0.37  | 0.37         |      | 0.37      |           | 0.54    | 0.57     | 0.57 | 0.49 | 0.49     | 0.49 |
| Clearance Time (s)                |         | 7.0   | 7.0          |      | 7.0       |           | 4.0     | 7.0      | 7.0  | 7.0  | 7.0      | 7.0  |
| Vehicle Extension (s)             |         | 5.0   | 5.0          |      | 5.0       |           | 5.0     | 5.0      | 5.0  | 5.0  | 5.0      | 5.0  |
| Lane Grp Cap (vph)                |         | 393   | 495          |      | 211       |           | 124     | 986      | 416  | 29   | 855      | 688  |
| v/s Ratio Prot                    |         |       |              |      |           |           | 0.03    | c0.63    |      |      | c0.58    |      |
| v/s Ratio Perm                    |         | c0.46 | 0.01         |      | 0.05      |           | 0.37    |          | 0.00 | 0.07 |          | 0.19 |
| v/c Ratio                         |         | 1.26  | 0.04         |      | 0.13      |           | 0.75    | 1.12     | 0.01 | 0.14 | 1.17     | 0.40 |
| Uniform Delay, d1                 |         | 38.0  | 24.4         |      | 25.3      |           | 27.2    | 26.0     | 11.3 | 16.6 | 30.5     | 19.3 |
| Progression Factor                |         | 1.00  | 1.00         |      | 1.00      |           | 1.00    | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Incremental Delay, d2             |         | 135.9 | 0.1          |      | 0.6       |           | 25.9    | 67.1     | 0.0  | 4.5  | 89.7     | 0.8  |
| Delay (s)                         |         | 173.9 | 24.5         |      | 25.9      |           | 53.0    | 93.1     | 11.3 | 21.1 | 120.2    | 20.0 |
| Level of Service                  |         | F     | С            |      | С         |           | D       | F        | В    | С    | F        | С    |
| Approach Delay (s)                |         | 159.4 |              |      | 25.9      |           |         | 89.7     |      |      | 85.7     |      |
| Approach LOS                      |         | F     |              |      | С         |           |         | F        |      |      | F        |      |
| Intersection Summary              |         |       |              |      |           |           |         |          |      |      |          |      |
| HCM 2000 Control Delay            |         |       | 98.7         | Н    | ICM 2000  | Level of  | Service |          | F    |      |          |      |
| HCM 2000 Volume to Capacity       | y ratio |       | 1.22         |      |           |           |         |          |      |      |          |      |
| Actuated Cycle Length (s)         |         |       | 120.0        |      | um of los |           |         |          | 12.0 |      |          |      |
| Intersection Capacity Utilization | n       |       | 116.5%       | IC   | CU Level  | of Servic | е       |          | Н    |      |          |      |
| Analysis Period (min)             |         |       | 15           |      |           |           |         |          |      |      |          |      |
| c Critical Lane Group             |         |       |              |      |           |           |         |          |      |      |          |      |

## Timings 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access 2/26/2014

| Lane ConfigurationsVolume (vph)422Turn TypePermProtected Phases4Detector Phase4Switch Phase4Switch Phase33.0Minimum Initial (s)12.01 Minimum Split (s)33.03 Total Split (s)45.04 Total Split (s)5.0All-Red Time (s)2.0Lost Time Adjust (s)-Total Lost Time (s)2.0Lead/Lag-Lead-Lag Optimize?4Recall ModeNoneActuated g/C Ratio0v/c Ratio1Control Delay17Queue Delay17LOS17                                                                                                                                                              | EBT EBR<br>6 115<br>NA Perm<br>4<br>4<br>12.0 12.0<br>33.0 33.0<br>45.0 45.0 | 7<br>Perm<br>8 | WBT         NBL           Image: WBT         Image: WBT           Image: WBT </th <th>NBT<br/>*<br/>836<br/>NA<br/>2</th> <th>NBR<br/>6<br/>Perm</th> <th>SBL<br/>6<br/>Perm</th> <th>SBT<br/>1024</th> <th>SBR</th> | NBT<br>*<br>836<br>NA<br>2 | NBR<br>6<br>Perm | SBL<br>6<br>Perm | SBT<br>1024 | SBR   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|------------------|-------------|-------|
| Volume (vph)422Turn TypePermProtected Phases4Permitted Phases4Detector Phase4Switch Phase33.0Minimum Initial (s)12.0Minimum Split (s)33.0Total Split (s)45.044Total Split (s)5.0All-Red Time (s)2.0Lost Time Adjust (s)-Total Lost Time (s)2.0Lead/LagLead/LagLead/Lag4Actuated g/C Ratio0v/c Ratio1Control Delay17Queue Delay17LOS4Approach Delay13Approach LOS120Intersection SummaryCycle Length: 120Actuated Cycle Length: 120-                                                                                                     | 6 115<br>NA Perm<br>4 4<br>4 4<br>12.0 12.0<br>33.0 33.0<br>45.0 45.0        | 7<br>Perm<br>8 | 7 107<br>NA pm+pt<br>8 5<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 836<br>NA                  | 6                | 6                |             | •     |
| Turn TypePermProtected Phases4Permitted Phases4Detector Phase4Switch Phase4Minimum Initial (s)12.0Minimum Split (s)33.0Total Split (s)37.5%37.Yellow Time (s)All-Red Time (s)2.0Lost Time Adjust (s)-Total Lost Time (s)2.0Lead/Lag-Lead/Lag-Lead/Lag-Control Delay17Queue Delay17Queue Delay17LOS-Approach Delay13Approach LOS-Intersection Summary-Cycle Length: 120-Actuated Cycle Length: 120                                                                                                                                       | NA Perm<br>4<br>4<br>4<br>12.0<br>33.0<br>45.0<br>45.0                       | Perm<br>8      | NA pm+pt<br>8 5<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                         | -                | -                | 1024        |       |
| Protected PhasesPermitted Phases4Detector Phase4Switch Phase12.0Minimum Initial (s)12.0Minimum Split (s)33.0Total Split (s)45.044Total Split (s)37.5%Yellow Time (s)5.0All-Red Time (s)2.0Lost Time Adjust (s)-Total Lost Time (s)2.0Lead-Lag Optimize?-Recall ModeNoneAct Effct Green (s)4Actuated g/C Ratio0v/c Ratio17Queue Delay17LOS-Approach Delay13Approach LOS-Intersection Summary-Cycle Length: 120-Actuated Cycle Length: 120-                                                                                               | 4<br>4<br>4<br>12.0<br>33.0<br>45.0<br>45.0                                  | 8              | 8 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | Perm             | Perm             |             | 574   |
| Permitted Phases4Detector Phase4Switch PhaseMinimum Initial (s)12.0Minimum Split (s)33.0Total Split (s)45.044Total Split (s)37.5%Yellow Time (s)5.0All-Red Time (s)2.0Lost Time Adjust (s)-Total Lost Time (s)2.0Lead-Lag Optimize?-Recall ModeNoneNoteAct Effct Green (s)4Actuated g/C Ratio0v/c Ratio17Queue Delay17LOS-Approach Delay13Approach LOS-Intersection Summary-Cycle Length: 120-Actuated Cycle Length: 120-                                                                                                               | 4<br>4 4<br>12.0 12.0<br>33.0 33.0<br>45.0 45.0                              |                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                          |                  | - 2              | NA          | Perm  |
| Detector Phase4Switch PhaseMinimum Initial (s)12.01Minimum Split (s)33.03Total Split (s)45.04Total Split (%)37.5%37.Yellow Time (s)5.04All-Red Time (s)2.01Lost Time Adjust (s)-Total Lost Time (s)2Lead-Lag-Lead-Lag Optimize?-Recall ModeNoneNoneAct Effct Green (s)4Actuated g/C Ratio0v/c Ratio17Queue Delay17LOS-Approach Delay13Approach LOS-Intersection Summary-Cycle Length: 120-Actuated Cycle Length: 120-                                                                                                                   | 4 4<br>12.0 12.0<br>33.0 33.0<br>45.0 45.0                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                  |                  | 6           |       |
| Switch Phase<br>Minimum Initial (s) 12.0 1<br>Minimum Split (s) 33.0 3<br>Total Split (s) 45.0 4<br>Total Split (%) 37.5% 37.<br>Yellow Time (s) 5.0<br>All-Red Time (s) 2.0<br>Lost Time Adjust (s) -<br>Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s) 4<br>Actuated g/C Ratio 0<br>v/c Ratio 1<br>Control Delay 17<br>Queue Delay 17<br>Queue Delay 17<br>LOS<br>Approach Delay 13<br>Approach LOS<br>Intersection Summary<br>Cycle Length: 120<br>Actuated Cycle Length: 120 | 12.0 12.0<br>33.0 33.0<br>45.0 45.0                                          | 8              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | 2                | 6                |             | 6     |
| Minimum Initial (s)12.01Minimum Split (s)33.03Total Split (s)45.04Total Split (%)37.5%37.Yellow Time (s)5.037.5%All-Red Time (s)2.01Lost Time Adjust (s)-Total Lost Time (s)2.0Lead-Lag-Lead-Lag Optimize?-Recall ModeNoneNotAct Effct Green (s)4Actuated g/C Ratio0v/c Ratio1Control Delay17Queue Delay17LOS-Approach Delay13Approach LOS-Intersection Summary-Cycle Length: 120-Actuated Cycle Length: 120-                                                                                                                           | 33.033.045.045.0                                                             |                | 8 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                          | 2                | 6                | 6           | 6     |
| Minimum Split (s)33.03Total Split (s)45.04Total Split (%)37.5%37.Yellow Time (s)5.07.5%All-Red Time (s)2.01Lost Time Adjust (s)-Total Lost Time (s)2.0Lead/Lag1Lead-Lag Optimize?4Recall ModeNoneNoteAct Effct Green (s)4Actuated g/C Ratio0v/c Ratio1Control Delay17Queue Delay17LOS4Approach Delay13Approach LOS120Intersection Summary20Cycle Length: 120120                                                                                                                                                                         | 33.033.045.045.0                                                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                  |                  |             |       |
| Total Split (s)45.04Total Split (%)37.5%37.Yellow Time (s)5.037.5%All-Red Time (s)2.01Lost Time Adjust (s)-Total Lost Time (s)-Lead/Lag-Lead-Lag Optimize?-Recall ModeNoneNoteAct Effct Green (s)4Actuated g/C Ratio0v/c Ratio1Control Delay17Queue Delay17LOS-Approach Delay13Approach LOS-Intersection Summary-Cycle Length: 120-Actuated Cycle Length: 120-                                                                                                                                                                          | 45.0 45.0                                                                    |                | 8.0 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.0                       | 30.0             | 30.0             | 30.0        | 30.0  |
| Total Split (%)37.5%37.Yellow Time (s)5.0All-Red Time (s)2.0Lost Time Adjust (s)-Total Lost Time (s)-Lead/Lag-Lead-Lag Optimize?-Recall ModeNoneNoteAct Effct Green (s)4Actuated g/C Ratio0v/c Ratio1Control Delay17Queue Delay17LOS-Approach Delay13Approach LOS-Intersection Summary-Cycle Length: 120-Actuated Cycle Length: 120-                                                                                                                                                                                                    |                                                                              |                | 33.0 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37.0                       | 37.0             | 37.0             | 37.0        | 37.0  |
| Yellow Time (s)5.0All-Red Time (s)2.0Lost Time Adjust (s)-Total Lost Time (s)-Lead/Lag-Lead-Lag Optimize?-Recall ModeNoneNoAct Effct Green (s)4Actuated g/C Ratio0v/c Ratio1Control Delay17Queue Delay17LOS-Approach Delay13Approach LOS-Intersection Summary-Cycle Length: 120-Actuated Cycle Length: 120-                                                                                                                                                                                                                             |                                                                              |                | 45.0 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75.0                       | 75.0             | 66.0             | 66.0        | 66.0  |
| All-Red Time (s)2.0Lost Time Adjust (s)-Total Lost Time (s)-Lead/Lag-Lead-Lag Optimize?-Recall ModeNoneNoAct Effct Green (s)4Actuated g/C Ratio0v/c Ratio1Control Delay17Queue Delay17LOS-Approach Delay13Approach LOS-Intersection Summary-Cycle Length: 120-Actuated Cycle Length: 120-                                                                                                                                                                                                                                               | 7.5% 37.5%                                                                   |                | 7.5% 7.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62.5%                      | 62.5%            | 55.0%            | 55.0%       | 55.0% |
| Lost Time Adjust (s) -<br>Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None Not<br>Act Effct Green (s) 4<br>Actuated g/C Ratio 0<br>v/c Ratio 1<br>Control Delay 17<br>Queue Delay 17<br>Queue Delay 17<br>LOS 17<br>Approach Delay 13<br>Approach Delay 13<br>Approach LOS 120<br>Intersection Summary<br>Cycle Length: 120                                                                                                                                                                                    | 5.0 5.0                                                                      |                | 5.0 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.0                        | 5.0              | 5.0              | 5.0         | 5.0   |
| Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None Not<br>Act Effct Green (s) 4<br>Actuated g/C Ratio 0<br>v/c Ratio 1<br>Control Delay 17<br>Queue Delay 17<br>Queue Delay 17<br>LOS<br>Approach Delay 13<br>Approach Delay 13<br>Approach LOS<br>Intersection Summary<br>Cycle Length: 120<br>Actuated Cycle Length: 120                                                                                                                                                                                       | 2.0 2.0                                                                      |                | 2.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0                        | 2.0              | 2.0              | 2.0         | 2.0   |
| Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None Not<br>Act Effct Green (s) 4<br>Actuated g/C Ratio 0<br>v/c Ratio 1<br>Control Delay 17<br>Queue Delay 17<br>LOS<br>Approach Delay 13<br>Approach Delay 13<br>Approach LOS<br>Intersection Summary<br>Cycle Length: 120<br>Actuated Cycle Length: 120                                                                                                                                                                                                                                | -3.0 -3.0                                                                    |                | -3.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -3.0                       | -3.0             | -3.0             | -3.0        | -3.0  |
| Lead-Lag Optimize?Recall ModeNoneNotAct Effct Green (s)4Actuated g/C Ratio0v/c Ratio1Control Delay17Queue Delay7Total Delay17LOS4Approach Delay13Approach LOS14Intersection Summary20Cycle Length: 120120Actuated Cycle Length: 120120                                                                                                                                                                                                                                                                                                  | 4.0 4.0                                                                      |                | 4.0 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.0                        | 4.0              | 4.0              | 4.0         | 4.0   |
| Recall ModeNoneNoAct Effct Green (s)4Actuated g/C Ratio0v/c Ratio1Control Delay17Queue Delay17Total Delay17LOS4Approach Delay13Approach LOS13Intersection Summary20Actuated Cycle Length: 120Actuated Cycle Length: 120                                                                                                                                                                                                                                                                                                                 |                                                                              |                | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                  | Lag              | Lag         | Lag   |
| Act Effct Green (s)4Actuated g/C Ratio0v/c Ratio1Control Delay17Queue Delay17Total Delay17LOS4Approach Delay13Approach LOS13Intersection Summary2Cycle Length: 120120Actuated Cycle Length: 120                                                                                                                                                                                                                                                                                                                                         |                                                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                  |                  |             |       |
| Actuated g/C Ratio0v/c Ratio1Control Delay17Queue Delay17Total Delay17LOS2Approach Delay13Approach LOS13Intersection Summary2Cycle Length: 12020Actuated Cycle Length: 120                                                                                                                                                                                                                                                                                                                                                              | None None                                                                    |                | None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Min                        | Min              | Min              | Min         | Min   |
| v/c Ratio 1<br>Control Delay 17<br>Queue Delay 17<br>LOS 17<br>Approach Delay 13<br>Approach LOS 11<br>Intersection Summary 120<br>Cycle Length: 120<br>Actuated Cycle Length: 120                                                                                                                                                                                                                                                                                                                                                      | 41.0 41.0                                                                    |                | 29.0 71.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71.0                       | 71.0             | 62.0             | 62.0        | 62.0  |
| Control Delay17Queue Delay17Total Delay17LOS13Approach Delay13Approach LOS13Intersection Summary2Cycle Length: 1202Actuated Cycle Length: 120                                                                                                                                                                                                                                                                                                                                                                                           | 0.34 0.34                                                                    |                | 0.24 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.59                       | 0.59             | 0.52             | 0.52        | 0.52  |
| Queue DelayTotal DelayTotal DelayLOSApproach DelayApproach LOSIntersection SummaryCycle Length: 120Actuated Cycle Length: 120                                                                                                                                                                                                                                                                                                                                                                                                           | 1.27 0.23                                                                    |                | 0.16 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.92                       | 0.02             | 0.13             | 1.25        | 0.63  |
| Total Delay       17         LOS       13         Approach Delay       13         Approach LOS       13         Intersection Summary       20         Cycle Length: 120       120         Actuated Cycle Length: 120       120                                                                                                                                                                                                                                                                                                          | 73.9 11.2                                                                    |                | 23.5 91.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37.6                       | 0.0              | 22.5             | 151.8       | 5.9   |
| LOS<br>Approach Delay 13<br>Approach LOS<br>Intersection Summary<br>Cycle Length: 120<br>Actuated Cycle Length: 120                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0 0.0                                                                      |                | 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                        | 0.0              | 0.0              | 0.0         | 0.0   |
| Approach Delay 13<br>Approach LOS<br>Intersection Summary<br>Cycle Length: 120<br>Actuated Cycle Length: 120                                                                                                                                                                                                                                                                                                                                                                                                                            | 73.9 11.2                                                                    |                | 23.5 91.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37.6                       | 0.0              | 22.5             | 151.8       | 5.9   |
| Approach LOS<br>Intersection Summary<br>Cycle Length: 120<br>Actuated Cycle Length: 120                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F B                                                                          |                | C F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D                          | А                | С                | F           | А     |
| Intersection Summary<br>Cycle Length: 120<br>Actuated Cycle Length: 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39.4                                                                         | 4              | 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43.4                       |                  |                  | 99.1        |       |
| Cycle Length: 120<br>Actuated Cycle Length: 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F                                                                            |                | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D                          |                  |                  | F           |       |
| Actuated Cycle Length: 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                  |                  |             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                  |                  |             |       |
| Natural Cycle: 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                  |                  |             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                  |                  |             |       |
| Control Type: Actuated-Uncoordinated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                  |                  |             |       |
| Maximum v/c Ratio: 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                  |                  |             |       |
| Intersection Signal Delay: 88.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |                | section LOS: F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                  |                  |             |       |
| Intersection Capacity Utilization 113.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | ICU L          | Level of Servic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | еH                         |                  |                  |             |       |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                  |                  |             |       |

#### Splits and Phases: 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access

| 75 s                                                       | 45 s      |
|------------------------------------------------------------|-----------|
| ★ ø5 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | -<br>₩ ø8 |
| 9 s 66 s                                                   | 45 s      |

# Queues 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access 2/26/2014

|                        | -      | $\mathbf{F}$ | ←     | 1     | Ť      | 1    | 1    | Ļ      | ~     |
|------------------------|--------|--------------|-------|-------|--------|------|------|--------|-------|
| Lane Group             | EBT    | EBR          | WBT   | NBL   | NBT    | NBR  | SBL  | SBT    | SBR   |
| Lane Group Flow (vph)  | 476    | 128          | 24    | 119   | 929    | 7    | 7    | 1138   | 638   |
| v/c Ratio              | 1.27   | 0.23         | 0.16  | 0.95  | 0.92   | 0.02 | 0.13 | 1.25   | 0.63  |
| Control Delay          | 173.9  | 11.2         | 23.5  | 91.2  | 37.6   | 0.0  | 22.5 | 151.8  | 5.9   |
| Queue Delay            | 0.0    | 0.0          | 0.0   | 0.0   | 0.0    | 0.0  | 0.0  | 0.0    | 0.0   |
| Total Delay            | 173.9  | 11.2         | 23.5  | 91.2  | 37.6   | 0.0  | 22.5 | 151.8  | 5.9   |
| Queue Length 50th (m)  | ~148.4 | 6.5          | 2.7   | 14.4  | 194.8  | 0.0  | 0.9  | ~353.0 | 9.9   |
| Queue Length 95th (m)  | #215.5 | 20.9         | 9.4   | #53.4 | #298.5 | 0.0  | 4.4  | #435.5 | 40.3  |
| Internal Link Dist (m) | 704.1  |              | 111.7 |       | 173.7  |      |      | 579.0  |       |
| Turn Bay Length (m)    |        | 50.0         |       | 90.0  |        | 30.0 | 30.0 |        | 120.0 |
| Base Capacity (vph)    | 376    | 556          | 211   | 125   | 1010   | 449  | 53   | 907    | 1007  |
| Starvation Cap Reductn | 0      | 0            | 0     | 0     | 0      | 0    | 0    | 0      | 0     |
| Spillback Cap Reductn  | 0      | 0            | 0     | 0     | 0      | 0    | 0    | 0      | 0     |
| Storage Cap Reductn    | 0      | 0            | 0     | 0     | 0      | 0    | 0    | 0      | 0     |
| Reduced v/c Ratio      | 1.27   | 0.23         | 0.11  | 0.95  | 0.92   | 0.02 | 0.13 | 1.25   | 0.63  |
|                        |        |              |       |       |        |      |      |        |       |

#### Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

# HCM Signalized Intersection Capacity Analysis

1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access 2/26/2014

|                                   | ۶       | +     | $\mathbf{F}$ | •    | +         | •         | •       | 1        | 1    | 1    | ţ        | ~    |
|-----------------------------------|---------|-------|--------------|------|-----------|-----------|---------|----------|------|------|----------|------|
| Movement                          | EBL     | EBT   | EBR          | WBL  | WBT       | WBR       | NBL     | NBT      | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations               |         | र्भ   | 1            |      | 4         |           | ሻ       | <b>↑</b> | 1    | ሻ    | <b>↑</b> | 1    |
| Volume (vph)                      | 422     | 6     | 115          | 7    | 7         | 7         | 107     | 836      | 6    | 6    | 1024     | 574  |
| Ideal Flow (vphpl)                | 1650    | 1650  | 1750         | 1550 | 1550      | 1550      | 1775    | 1900     | 1750 | 1775 | 1900     | 1750 |
| Total Lost time (s)               |         | 4.0   | 4.0          |      | 4.0       |           | 4.0     | 4.0      | 4.0  | 4.0  | 4.0      | 4.0  |
| Lane Util. Factor                 |         | 1.00  | 1.00         |      | 1.00      |           | 1.00    | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Frt                               |         | 1.00  | 0.85         |      | 0.95      |           | 1.00    | 1.00     | 0.85 | 1.00 | 1.00     | 0.85 |
| Flt Protected                     |         | 0.95  | 1.00         |      | 0.98      |           | 0.95    | 1.00     | 1.00 | 0.95 | 1.00     | 1.00 |
| Satd. Flow (prot)                 |         | 1475  | 1456         |      | 720       |           | 1603    | 1708     | 735  | 834  | 1756     | 1428 |
| Flt Permitted                     |         | 0.71  | 1.00         |      | 0.83      |           | 0.06    | 1.00     | 1.00 | 0.12 | 1.00     | 1.00 |
| Satd. Flow (perm)                 |         | 1102  | 1456         |      | 604       |           | 107     | 1708     | 735  | 104  | 1756     | 1428 |
| Peak-hour factor, PHF             | 0.90    | 0.90  | 0.90         | 0.90 | 0.90      | 0.90      | 0.90    | 0.90     | 0.90 | 0.90 | 0.90     | 0.90 |
| Adj. Flow (vph)                   | 469     | 7     | 128          | 8    | 8         | 8         | 119     | 929      | 7    | 7    | 1138     | 638  |
| RTOR Reduction (vph)              | 0       | 0     | 59           | 0    | 5         | 0         | 0       | 0        | 3    | 0    | 0        | 269  |
| Lane Group Flow (vph)             | 0       | 476   | 69           | 0    | 19        | 0         | 119     | 929      | 4    | 7    | 1138     | 369  |
| Heavy Vehicles (%)                | 4%      | 100%  | 1%           | 100% | 100%      | 100%      | 4%      | 10%      | 100% | 100% | 7%       | 3%   |
| Turn Type                         | Perm    | NA    | Perm         | Perm | NA        |           | pm+pt   | NA       | Perm | Perm | NA       | Perm |
| Protected Phases                  |         | 4     |              |      | 8         |           | 5       | 2        |      |      | 6        |      |
| Permitted Phases                  | 4       |       | 4            | 8    |           |           | 2       |          | 2    | 6    |          | 6    |
| Actuated Green, G (s)             |         | 38.0  | 38.0         |      | 38.0      |           | 68.0    | 68.0     | 68.0 | 59.0 | 59.0     | 59.0 |
| Effective Green, g (s)            |         | 41.0  | 41.0         |      | 41.0      |           | 68.0    | 71.0     | 71.0 | 62.0 | 62.0     | 62.0 |
| Actuated g/C Ratio                |         | 0.34  | 0.34         |      | 0.34      |           | 0.57    | 0.59     | 0.59 | 0.52 | 0.52     | 0.52 |
| Clearance Time (s)                |         | 7.0   | 7.0          |      | 7.0       |           | 4.0     | 7.0      | 7.0  | 7.0  | 7.0      | 7.0  |
| Vehicle Extension (s)             |         | 5.0   | 5.0          |      | 5.0       |           | 5.0     | 5.0      | 5.0  | 5.0  | 5.0      | 5.0  |
| Lane Grp Cap (vph)                |         | 376   | 497          |      | 206       |           | 122     | 1010     | 434  | 53   | 907      | 737  |
| v/s Ratio Prot                    |         |       |              |      |           |           | 0.04    | c0.54    |      |      | c0.65    |      |
| v/s Ratio Perm                    |         | c0.43 | 0.05         |      | 0.03      |           | 0.51    |          | 0.01 | 0.07 |          | 0.26 |
| v/c Ratio                         |         | 1.27  | 0.14         |      | 0.09      |           | 0.98    | 0.92     | 0.01 | 0.13 | 1.25     | 0.50 |
| Uniform Delay, d1                 |         | 39.5  | 27.3         |      | 26.8      |           | 30.7    | 21.9     | 10.1 | 15.0 | 29.0     | 18.9 |
| Progression Factor                |         | 1.00  | 1.00         |      | 1.00      |           | 1.00    | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Incremental Delay, d2             |         | 139.3 | 0.3          |      | 0.4       |           | 73.9    | 13.5     | 0.0  | 2.4  | 123.7    | 1.1  |
| Delay (s)                         |         | 178.8 | 27.6         |      | 27.2      |           | 104.6   | 35.5     | 10.1 | 17.4 | 152.7    | 20.0 |
| Level of Service                  |         | F     | С            |      | С         |           | F       | D        | В    | В    | F        | С    |
| Approach Delay (s)                |         | 146.7 |              |      | 27.2      |           |         | 43.1     |      |      | 104.7    |      |
| Approach LOS                      |         | F     |              |      | С         |           |         | D        |      |      | F        |      |
| Intersection Summary              |         |       |              |      |           |           |         |          |      |      |          |      |
| HCM 2000 Control Delay            |         |       | 92.7         | Н    | CM 2000   | Level of  | Service |          | F    |      |          |      |
| HCM 2000 Volume to Capacit        | y ratio |       | 1.26         |      |           |           |         |          |      |      |          |      |
| Actuated Cycle Length (s)         |         |       | 120.0        |      | um of los |           |         |          | 12.0 |      |          |      |
| Intersection Capacity Utilization | n       |       | 113.0%       | IC   | CU Level  | of Servic | е       |          | Н    |      |          |      |
| Analysis Period (min)             |         |       | 15           |      |           |           |         |          |      |      |          |      |
| c Critical Lane Group             |         |       |              |      |           |           |         |          |      |      |          |      |

## Timings 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access 2/26/2014

| Lane Group         EBL         EBT         EBR         WBL         WBT         NBL         NBT         NBR         SBL         SBT         SBR           Lane Configurations         4         1         1         84         993         4         4         902         471           Volume (vph)         442         4         48         11         11         84         993         4         4         902         471           Turn Type         Perm         NA         Free         Perm         NA         prem         NA         Free           Protected Phases         4         Free         8         5         2         6         6           Permitted Phases         4         4         8         8         5         2         6         6           Switch Phase         4         4         8         8         5         2         6         6           Minimum Initial (s)         12.0         12.0         8.0         8.0         5.0         30.0         30.0         30.0         30.0           Total Split (s)         5.0         5.0         5.0         5.0         5.0         5.0         5.0 <td< th=""><th></th><th>٦</th><th>-</th><th><math>\mathbf{F}</math></th><th>4</th><th>←</th><th>1</th><th>1</th><th>۲</th><th>1</th><th>Ļ</th><th>∢</th><th></th></td<> |                               | ٦          | -      | $\mathbf{F}$ | 4    | ←          | 1         | 1            | ۲    | 1    | Ļ            | ∢    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------|--------|--------------|------|------------|-----------|--------------|------|------|--------------|------|--|
| Volume (vph)       442       4       48       11       11       84       993       4       4       902       471         Turn Type       Perm       NA       Free       Perm       NA       Prem       NA       Perm       NA       Free         Protected Phases       4       Free       8       5       2       6       Free         Detector Phase       4       4       8       8       5       2       6       6         Winhum Split (s)       12.0       12.0       8.0       8.0       5.0       30.0       30.0       30.0       30.0         Minimum Split (s)       33.0       33.0       33.0       33.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0                                                                                                                                                                                                              | Lane Group                    | EBL        | EBT    |              | WBL  | WBT        |           | NBT          |      | SBL  |              | SBR  |  |
| Turn Type         Perm         NA         Free         Perm         NA         prese         NA         prese         NA         Perm         NA         Free           Permitted Phases         4         Free         8         2         2         6         Free           Permitted Phases         4         8         8         5         2         2         6         Free           Detector Phase         4         8         8         5         2         2         6         Free           Minimum Initial (s)         12.0         12.0         8.0         8.0         5.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.0         37.                                                                                                               | Lane Configurations           |            | र्स    | 1            |      | 4          | ሻ         | - <b>†</b> † | 1    | ሻ    | - <b>†</b> † | 1    |  |
| Protected Phases       4       Free       8       5       2       6         Permitted Phases       4       Free       8       2       2       6       Free         Sector Phase       4       8       8       5       2       2       6       6         Switch Phase       8       8       5       2       2       6       6         Minimum Initial (s)       12.0       12.0       8.0       8.0       5.0       30.0       30.0       30.0       30.0         Minimum Split (s)       33.0       33.0       33.0       33.0       9.0       37.0       37.0       37.0       37.0         Total Split (s)       49.0       9.0       46.0       46.0       37.0       37.0       37.0         Vallow Time (s)       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0         Lead/Lag       Lag       Lag       Lag       Lag       Lag       Lag       Lag       Lag       Lag         Lead/Lag       Optimize?       8.00       0.33       0.43       0.43       0.43       0.35       1.0                                                                                                                                                                                                                                       | Volume (vph)                  | 442        | 4      | 48           | 11   | 11         | 84        | 993          | 4    | -    | 902          | 471  |  |
| Permitted Phases       4       Free       8       2       2       6       Free         Detector Phase       4       4       8       8       5       2       2       6       6         Switch Phase       5       12.0       12.0       8.0       8.0       5.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0                                                                                                                                                                                          |                               | Perm       | NA     | Free         | Perm | NA         | pm+pt     |              | Perm | Perm | NA           | Free |  |
| Detector Phase       4       4       8       8       5       2       2       6       6         Switch Phase       Minimum Initial (s)       12.0       12.0       8.0       8.0       5.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0                                                                                                                                                                       |                               |            | 4      |              |      | 8          | 5         | 2            |      |      | 6            |      |  |
| Switch Phase         Minimum Initial (s)       12.0       12.0       8.0       8.0       5.0       30.0       30.0       30.0         Minimum Split (s)       33.0       33.0       33.0       33.0       9.0       37.0       37.0       37.0       37.0         Total Split (s)       49.0       49.0       49.0       9.0       46.0       46.0       37.0       37.0         Total Split (s)       51.6%       51.6%       51.6%       50.50       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0 </td <td></td> <td></td> <td></td> <td>Free</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Free</td> <td></td>                                                  |                               |            |        | Free         |      |            |           |              |      |      |              | Free |  |
| Minimum Initial (s)       12.0       12.0       8.0       8.0       5.0       30.0       30.0       30.0       30.0         Minimum Split (s)       33.0       33.0       33.0       33.0       33.0       37.0       37.0       37.0       37.0         Total Split (s)       51.6%       51.6%       51.6%       50.50       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       <                                                                                                                                                         |                               | 4          | 4      |              | 8    | 8          | 5         | 2            | 2    | 6    | 6            |      |  |
| Minimum Split (s)       33.0       33.0       33.0       33.0       33.0       37.0       37.0       37.0       37.0         Total Split (s)       49.0       49.0       49.0       49.0       9.0       46.0       46.0       37.0       37.0       37.0         Total Split (s)       51.6%       51.6%       51.6%       51.6%       51.6%       50.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0                                                                                                                                                                                               |                               |            |        |              |      |            |           |              |      |      |              |      |  |
| Total Split (s)       49.0       49.0       49.0       9.0       46.0       46.0       37.0       37.0         Total Split (%)       51.6%       51.6%       51.6%       51.6%       9.5%       48.4%       48.4%       38.9%       38.9%         Yellow Time (s)       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0         All-Red Time (s)       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0<                                                                                                                                                                                                | <b>、</b> ,                    |            |        |              |      |            |           |              |      |      |              |      |  |
| Total Split (%)       51.6%       51.6%       51.6%       51.6%       5.0       3.0       5.0       5.0       5.0         Yellow Time (s)       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0 <td></td>                                                                    |                               |            |        |              |      |            |           |              |      |      |              |      |  |
| Yellow Time (s)       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0         All-Red Time (s)       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0                                                                                                                                                                                                             |                               |            |        |              |      |            |           |              |      |      |              |      |  |
| All-Red Time (s)       2.0       2.0       2.0       1.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0 <td></td>                                                                     |                               |            |        |              |      |            |           |              |      |      |              |      |  |
| Lost Time Adjust (s)       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0         Total Lost Time (s)       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0                                                                                                                                                                                                         |                               |            |        |              |      |            |           |              |      |      |              |      |  |
| Total Lost Time (s)       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0<                                                                                                                                                                                                   |                               | 2.0        |        |              | 2.0  |            |           |              |      |      |              |      |  |
| Lead/Lag       Lag       Lag         Lead-Lag Optimize?       Recall Mode       None       None       None       None       None       Min       Min       Min       Min         Act Effct Green (s)       45.1       93.3       31.1       40.2       40.2       43.1       33.1       93.3         Actuated g/C Ratio       0.48       1.00       0.33       0.43       0.43       0.35       0.35       1.00         v/c Ratio       0.96       0.04       0.17       0.58       0.77       0.01       0.09       0.85       0.37         Control Delay       56.4       0.1       13.1       31.3       27.1       0.0       26.2       37.0       0.8         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                         | <b>,</b> , , ,                |            |        |              |      |            |           |              |      |      |              |      |  |
| Lead-Lag Optimize?         None         None         None         None         Min                                                                                                       |                               |            | 4.0    |              |      | 4.0        |           | 4.0          | 4.0  |      |              |      |  |
| Recall Mode         None         None         None         None         Min         Min         Min         Min           Act Effct Green (s)         45.1         93.3         31.1         40.2         40.2         40.2         33.1         33.1         93.3           Actuated g/C Ratio         0.48         1.00         0.33         0.43         0.43         0.43         0.35         0.35         1.00           V/c Ratio         0.96         0.04         0.17         0.58         0.77         0.01         0.09         0.85         0.37           Control Delay         56.4         0.1         13.1         31.3         27.1         0.0         26.2         37.0         0.8           Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0                                                                                                              |                               |            |        |              |      |            | Lead      |              |      | Lag  | Lag          |      |  |
| Act Effct Green (s)       45.1       93.3       31.1       40.2       40.2       40.2       33.1       33.1       93.3         Actuated g/C Ratio       0.48       1.00       0.33       0.43       0.43       0.43       0.35       0.35       1.00         v/c Ratio       0.96       0.04       0.17       0.58       0.77       0.01       0.09       0.85       0.37         Control Delay       56.4       0.1       13.1       31.3       27.1       0.0       26.2       37.0       0.8         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                    | Lead-Lag Optimize?            |            |        |              |      |            |           |              |      |      |              |      |  |
| Actuated g/C Ratio       0.48       1.00       0.33       0.43       0.43       0.43       0.35       0.35       1.00         v/c Ratio       0.96       0.04       0.17       0.58       0.77       0.01       0.09       0.85       0.37         Control Delay       56.4       0.1       13.1       31.3       27.1       0.0       26.2       37.0       0.8         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                           |                               | None       |        |              | None |            |           |              |      |      |              |      |  |
| v/c Ratio       0.96       0.04       0.17       0.58       0.77       0.01       0.09       0.85       0.37         Control Delay       56.4       0.1       13.1       31.3       27.1       0.0       26.2       37.0       0.8         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                 |                               |            |        |              |      |            |           |              |      |      |              |      |  |
| Control Delay       56.4       0.1       13.1       31.3       27.1       0.0       26.2       37.0       0.8         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                              |                               |            |        |              |      |            |           |              |      |      |              |      |  |
| Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                            |                               |            |        |              |      |            |           |              |      |      |              |      |  |
| Total Delay       56.4       0.1       13.1       31.3       27.1       0.0       26.2       37.0       0.8         LOS       E       A       B       C       C       A       C       D       A         Approach Delay       51.0       13.1       27.3       24.6       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       C       D       A       A       A       A       B       C       C       A       A       B       C       D       B       D       D       D       B       C       D       A       A       A       A       A       A       A       B       C       D       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A                                                                                                                                                                                                                                                                                                               |                               |            |        |              |      |            |           |              |      |      |              |      |  |
| LOSEABCCACDAApproach Delay51.013.127.324.6Approach LOSDBCCIntersection SummaryCycle Length: 95Actuated Cycle Length: 93.3Natural Cycle: 90Control Type: Actuated-UncoordinatedMaximum v/c Ratio: 0.96Intersection Signal Delay: 29.8Intersection LOS: CIntersection Capacity Utilization 97.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                             |            |        |              |      |            |           |              |      |      |              |      |  |
| Approach Delay51.013.127.324.6Approach LOSDBCCIntersection SummaryCycle Length: 95Actuated Cycle Length: 93.3Natural Cycle: 90Control Type: Actuated-UncoordinatedMaximum v/c Ratio: 0.96Intersection LOS: CIntersection Capacity Utilization 97.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |            |        |              |      |            |           |              |      |      |              |      |  |
| Approach LOSDBCCIntersection SummaryCycle Length: 95Actuated Cycle Length: 93.3Natural Cycle: 90Control Type: Actuated-UncoordinatedMaximum v/c Ratio: 0.96Intersection Signal Delay: 29.8Intersection LOS: CIntersection Capacity Utilization 97.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |            |        | A            |      |            | С         |              | A    | С    |              | A    |  |
| Intersection Summary Cycle Length: 95 Actuated Cycle Length: 93.3 Natural Cycle: 90 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.96 Intersection Signal Delay: 29.8 Intersection LOS: C Intersection Capacity Utilization 97.6% ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |            |        |              |      |            |           |              |      |      |              |      |  |
| Cycle Length: 95<br>Actuated Cycle Length: 93.3<br>Natural Cycle: 90<br>Control Type: Actuated-Uncoordinated<br>Maximum v/c Ratio: 0.96<br>Intersection Signal Delay: 29.8 Intersection LOS: C<br>Intersection Capacity Utilization 97.6% ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Approach LOS                  |            | D      |              |      | В          |           | С            |      |      | С            |      |  |
| Actuated Cycle Length: 93.3         Natural Cycle: 90         Control Type: Actuated-Uncoordinated         Maximum v/c Ratio: 0.96         Intersection Signal Delay: 29.8         Intersection Capacity Utilization 97.6%         ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |            |        |              |      |            |           |              |      |      |              |      |  |
| Natural Cycle: 90         Control Type: Actuated-Uncoordinated         Maximum v/c Ratio: 0.96         Intersection Signal Delay: 29.8         Intersection LOS: C         Intersection Capacity Utilization 97.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cycle Length: 95              |            |        |              |      |            |           |              |      |      |              |      |  |
| Control Type: Actuated-Uncoordinated         Maximum v/c Ratio: 0.96         Intersection Signal Delay: 29.8         Intersection Capacity Utilization 97.6%         ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |            |        |              |      |            |           |              |      |      |              |      |  |
| Maximum v/c Ratio: 0.96Intersection Signal Delay: 29.8Intersection LOS: CIntersection Capacity Utilization 97.6%ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |            |        |              |      |            |           |              |      |      |              |      |  |
| Intersection Signal Delay: 29.8Intersection LOS: CIntersection Capacity Utilization 97.6%ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | oordinated | t      |              |      |            |           |              |      |      |              |      |  |
| Intersection Capacity Utilization 97.6% ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |            |        |              |      |            |           |              |      |      |              |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Intersection Signal Delay: 29 | 9.8        |        |              | li   | ntersectio | n LOS: C  |              |      |      |              |      |  |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | tion 97.6% | ,<br>0 |              | [(   | CU Level   | of Servic | e F          |      |      |              |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analysis Period (min) 15      |            |        |              |      |            |           |              |      |      |              |      |  |

# Splits and Phases: 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access

|          | A <sub>04</sub> |
|----------|-----------------|
| 46 s     | 49 s            |
| ★ ø5 ₩ø6 | ₩ ø8            |
| 9 s 37 s | 49 s            |

# Queues 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access 2/26/2014

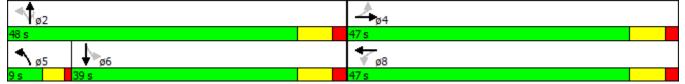
|                        | <b>→</b> | $\mathbf{F}$ | ←     | 1     | Ť     | ۲    | 1    | ţ      | ~     |
|------------------------|----------|--------------|-------|-------|-------|------|------|--------|-------|
| Lane Group             | EBT      | EBR          | WBT   | NBL   | NBT   | NBR  | SBL  | SBT    | SBR   |
| Lane Group Flow (vph)  | 495      | 53           | 36    | 93    | 1103  | 4    | 4    | 1002   | 523   |
| v/c Ratio              | 0.96     | 0.04         | 0.17  | 0.58  | 0.77  | 0.01 | 0.09 | 0.85   | 0.37  |
| Control Delay          | 56.4     | 0.1          | 13.1  | 31.3  | 27.1  | 0.0  | 26.2 | 37.0   | 0.8   |
| Queue Delay            | 0.0      | 0.0          | 0.0   | 0.0   | 0.0   | 0.0  | 0.0  | 0.0    | 0.0   |
| Total Delay            | 56.4     | 0.1          | 13.1  | 31.3  | 27.1  | 0.0  | 26.2 | 37.0   | 0.8   |
| Queue Length 50th (m)  | 90.1     | 0.0          | 2.4   | 10.3  | 91.0  | 0.0  | 0.5  | 94.1   | 0.0   |
| Queue Length 95th (m)  | #159.6   | 0.0          | 8.3   | #22.1 | 117.1 | 0.0  | 3.3  | #131.4 | 0.0   |
| Internal Link Dist (m) | 704.1    |              | 111.7 |       | 173.7 |      |      | 579.0  |       |
| Turn Bay Length (m)    |          | 50.0         |       | 90.0  |       | 30.0 | 30.0 |        | 120.0 |
| Base Capacity (vph)    | 517      | 1350         | 309   | 161   | 1490  | 356  | 47   | 1174   | 1401  |
| Starvation Cap Reductn | 0        | 0            | 0     | 0     | 0     | 0    | 0    | 0      | 0     |
| Spillback Cap Reductn  | 0        | 0            | 0     | 0     | 0     | 0    | 0    | 0      | 0     |
| Storage Cap Reductn    | 0        | 0            | 0     | 0     | 0     | 0    | 0    | 0      | 0     |
| Reduced v/c Ratio      | 0.96     | 0.04         | 0.12  | 0.58  | 0.74  | 0.01 | 0.09 | 0.85   | 0.37  |
| Interception Summary   |          |              |       |       |       |      |      |        |       |

#### Intersection Summary

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

# HCM Signalized Intersection Capacity Analysis


1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access 2/26/2014

|                                   | ۶     | +     | $\mathbf{F}$ | 4    | +         | *          | •       | 1            | 1    | 1    | Ļ     | ~    |
|-----------------------------------|-------|-------|--------------|------|-----------|------------|---------|--------------|------|------|-------|------|
| Movement                          | EBL   | EBT   | EBR          | WBL  | WBT       | WBR        | NBL     | NBT          | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations               |       | र्भ   | 1            |      | 4         |            | ሻ       | - <b>†</b> † | 1    | ሻ    | - 11  | 1    |
| Volume (vph)                      | 442   | 4     | 48           | 11   | 11        | 11         | 84      | 993          | 4    | 4    | 902   | 471  |
| Ideal Flow (vphpl)                | 1650  | 1650  | 1750         | 1550 | 1550      | 1550       | 1775    | 1900         | 1750 | 1775 | 1900  | 1750 |
| Total Lost time (s)               |       | 4.0   | 1.0          |      | 4.0       |            | 4.0     | 4.0          | 4.0  | 4.0  | 4.0   | 1.0  |
| Lane Util. Factor                 |       | 1.00  | 1.00         |      | 1.00      |            | 1.00    | 0.95         | 1.00 | 1.00 | 0.95  | 1.00 |
| Frt                               |       | 1.00  | 0.85         |      | 0.95      |            | 1.00    | 1.00         | 0.85 | 1.00 | 1.00  | 0.85 |
| Flt Protected                     |       | 0.95  | 1.00         |      | 0.98      |            | 0.95    | 1.00         | 1.00 | 0.95 | 1.00  | 1.00 |
| Satd. Flow (prot)                 |       | 1456  | 1350         |      | 720       |            | 1619    | 3305         | 735  | 834  | 3305  | 1401 |
| Flt Permitted                     |       | 0.70  | 1.00         |      | 0.86      |            | 0.12    | 1.00         | 1.00 | 0.15 | 1.00  | 1.00 |
| Satd. Flow (perm)                 |       | 1072  | 1350         |      | 628       |            | 200     | 3305         | 735  | 135  | 3305  | 1401 |
| Peak-hour factor, PHF             | 0.90  | 0.90  | 0.90         | 0.90 | 0.90      | 0.90       | 0.90    | 0.90         | 0.90 | 0.90 | 0.90  | 0.90 |
| Adj. Flow (vph)                   | 491   | 4     | 53           | 12   | 12        | 12         | 93      | 1103         | 4    | 4    | 1002  | 523  |
| RTOR Reduction (vph)              | 0     | 0     | 0            | 0    | 6         | 0          | 0       | 0            | 2    | 0    | 0     | 0    |
| Lane Group Flow (vph)             | 0     | 495   | 53           | 0    | 30        | 0          | 93      | 1103         | 2    | 4    | 1002  | 523  |
| Heavy Vehicles (%)                | 6%    | 100%  | 9%           | 100% | 100%      | 100%       | 3%      | 8%           | 100% | 100% | 8%    | 5%   |
| Turn Type                         | Perm  | NA    | Free         | Perm | NA        |            | pm+pt   | NA           | Perm | Perm | NA    | Free |
| Protected Phases                  |       | 4     |              |      | 8         |            | 5       | 2            |      |      | 6     |      |
| Permitted Phases                  | 4     |       | Free         | 8    |           |            | 2       |              | 2    | 6    |       | Free |
| Actuated Green, G (s)             |       | 42.1  | 94.1         |      | 42.1      |            | 38.0    | 38.0         | 38.0 | 30.1 | 30.1  | 94.1 |
| Effective Green, g (s)            |       | 45.1  | 94.1         |      | 45.1      |            | 38.0    | 41.0         | 41.0 | 33.1 | 33.1  | 94.1 |
| Actuated g/C Ratio                |       | 0.48  | 1.00         |      | 0.48      |            | 0.40    | 0.44         | 0.44 | 0.35 | 0.35  | 1.00 |
| Clearance Time (s)                |       | 7.0   |              |      | 7.0       |            | 4.0     | 7.0          | 7.0  | 7.0  | 7.0   |      |
| Vehicle Extension (s)             |       | 5.0   |              |      | 5.0       |            | 5.0     | 5.0          | 5.0  | 5.0  | 5.0   |      |
| Lane Grp Cap (vph)                |       | 513   | 1350         |      | 300       |            | 139     | 1440         | 320  | 47   | 1162  | 1401 |
| v/s Ratio Prot                    |       |       |              |      |           |            | 0.03    | c0.33        |      |      | c0.30 |      |
| v/s Ratio Perm                    |       | c0.46 | 0.04         |      | 0.05      |            | 0.24    |              | 0.00 | 0.03 |       | 0.37 |
| v/c Ratio                         |       | 0.96  | 0.04         |      | 0.10      |            | 0.67    | 0.77         | 0.01 | 0.09 | 0.86  | 0.37 |
| Uniform Delay, d1                 |       | 23.7  | 0.0          |      | 13.4      |            | 21.6    | 22.5         | 15.0 | 20.4 | 28.4  | 0.0  |
| Progression Factor                |       | 1.00  | 1.00         |      | 1.00      |            | 1.00    | 1.00         | 1.00 | 1.00 | 1.00  | 1.00 |
| Incremental Delay, d2             |       | 31.2  | 0.1          |      | 0.3       |            | 15.0    | 2.9          | 0.0  | 1.6  | 7.4   | 0.8  |
| Delay (s)                         |       | 54.9  | 0.1          |      | 13.7      |            | 36.6    | 25.4         | 15.0 | 22.0 | 35.8  | 0.8  |
| Level of Service                  |       | D     | А            |      | В         |            | D       | С            | В    | С    | D     | А    |
| Approach Delay (s)                |       | 49.6  |              |      | 13.7      |            |         | 26.3         |      |      | 23.8  |      |
| Approach LOS                      |       | D     |              |      | В         |            |         | С            |      |      | С     |      |
| Intersection Summary              |       |       |              |      |           |            |         |              |      |      |       |      |
| HCM 2000 Control Delay            |       |       | 28.8         | Н    | ICM 2000  | Level of   | Service |              | С    |      |       |      |
| HCM 2000 Volume to Capacity       | ratio |       | 0.93         |      |           |            |         |              |      |      |       |      |
| Actuated Cycle Length (s)         |       |       | 94.1         | S    | um of los | t time (s) |         |              | 12.0 |      |       |      |
| Intersection Capacity Utilization | n     |       | 97.6%        |      | CU Level  |            |         |              | F    |      |       |      |
| Analysis Period (min)             |       |       | 15           |      |           |            |         |              |      |      |       |      |
| c Critical Lane Group             |       |       |              |      |           |            |         |              |      |      |       |      |

## Timings 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access 2/26/2014

| Lane Group         EBL         EBT         EBR         WBL         WBT         NBL         NBT         NBR         SBL         SBT         SBR           Lane Configurations         4         1         4         1         4         1         4         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <t< th=""><th></th><th>٦</th><th>-</th><th><math>\mathbf{i}</math></th><th>4</th><th>-</th><th>1</th><th>Ť</th><th>1</th><th>1</th><th>Ļ</th><th>∢</th></t<>                                                 |                                       | ٦         | -   | $\mathbf{i}$ | 4    | -        | 1         | Ť           | 1    | 1        | Ļ           | ∢    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------|-----|--------------|------|----------|-----------|-------------|------|----------|-------------|------|
| Volume (vph)         422         6         115         7         7         107         836         6         6         1024         574           Turn Type         Perm         NA         Free         Perm         NA         Perm         NA         Perm         NA         Free           Protected Phases         4         Free         8         5         2         6         Free           Permitted Phases         4         8         8         5         2         6         6           Switch Phase         Minimum Initial (s)         12.0         12.0         8.0         8.0         5.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0                                                                                                                                 | Lane Group                            | EBL       | EBT | EBR          | WBL  | WBT      | NBL       | NBT         | NBR  | SBL      | SBT         | SBR  |
| Turn Type         Perm         NA         Free         Perm         NA         protected Phases         4         8         5         2         6           Permitted Phases         4         Free         8         2         2         6         Free           Detector Phase         4         4         8         8         5         2         2         6         Free           Minimum Shita (s)         12.0         12.0         8.0         8.0         5.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0                                                                                                                        | Lane Configurations                   |           | र्स | 1            |      | 4        | <u>۲</u>  | - <b>††</b> | 1    | <u>۲</u> | - <b>††</b> | 1    |
| Protected Phases         4         Free         8         5         2         6           Permitted Phases         4         Free         8         2         2         6         Free           Detector Phase         4         8         8         5         2         2         6         Free           Minimum Initial (s)         12.0         12.0         8.0         8.0         5.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0                                                                                                                    | Volume (vph)                          | 422       | 6   | 115          | 7    | 7        | 107       | 836         | 6    | 6        | 1024        | 574  |
| Permitted Phases         4         Free         8         2         2         6         Free           Detector Phase         4         4         8         8         5         2         2         6         6           Switch Phase          12.0         12.0         8.0         8.0         5.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30                                                                                                                    |                                       | Perm      |     | Free         | Perm | NA       | pm+pt     |             | Perm | Perm     |             | Free |
| Detector Phase       4       4       8       8       5       2       2       6       6         Switch Phase       Minimum Initial (s)       12.0       12.0       8.0       8.0       5.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0                                                                                                                                                                                    |                                       |           | 4   |              |      | 8        |           | 2           |      |          | 6           |      |
| Switch Phase         Minimum Initial (s)       12.0       8.0       8.0       5.0       30.0       30.0       30.0         Minimum Split (s)       33.0       33.0       33.0       9.0       37.0       37.0       37.0       37.0         Total Split (s)       47.0       47.0       47.0       47.0       48.0       39.0       39.0       39.0         Total Split (s)       49.5%       49.5%       49.5%       9.5%       50.5%       50.5%       41.1%       41.1%         Yellow Time (s)       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0 <td></td> <td></td> <td></td> <td>Free</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Free</td>                                                                              |                                       |           |     | Free         |      |          |           |             |      |          |             | Free |
| Minimum Initial (s)       12.0       12.0       8.0       8.0       5.0       30.0       30.0       30.0       30.0         Minimum Split (s)       33.0       33.0       33.0       33.0       33.0       33.0       37.0       37.0       37.0       37.0         Total Split (s)       47.0       47.0       47.0       47.0       9.0       48.0       39.0       39.0         Total Split (%)       49.5%       49.5%       49.5%       9.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%       50.5%                                                                                                                                                     |                                       | 4         | 4   |              | 8    | 8        | 5         | 2           | 2    | 6        | 6           |      |
| Minimum Split (s)       33.0       33.0       33.0       33.0       33.0       37.0       37.0       37.0       37.0         Total Split (s)       47.0       47.0       47.0       47.0       9.0       48.0       48.0       39.0       39.0         Total Split (s)       49.5%       49.5%       49.5%       9.5%       50.5%       50.5%       41.1%       41.1%         Yellow Time (s)       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0                                                                                                                                                                                                               |                                       |           |     |              |      |          |           |             |      |          |             |      |
| Total Split (s)       47.0       47.0       47.0       47.0       9.0       48.0       48.0       39.0       39.0         Total Split (%)       49.5%       49.5%       49.5%       49.5%       9.5%       50.5%       50.5%       41.1%       41.1%         Yellow Time (s)       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       <                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · · |           |     |              |      |          |           |             |      |          |             |      |
| Total Split (%)       49.5%       49.5%       49.5%       49.5%       50.5       50.5%       51.1%       41.1%       41.1%         Yellow Time (s)       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                        |                                       |           |     |              |      |          |           |             |      |          |             |      |
| Yellow Time (s)       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0         All-Red Time (s)       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0                                                                                                                                                                                                                          |                                       |           |     |              |      |          |           |             |      |          |             |      |
| All-Red Time (s)       2.0       2.0       2.0       1.0       2.0       2.0       2.0       2.0         Lost Time Adjust (s)       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0         Total Lost Time (s)       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0         Lead/Lag       Lead       Lead       Lag       Lag       Lag       Lag         Lead-Lag Optimize?       Recall Mode       None       None       None       None       Min       Min       Min         Act Effct Green (s)       43.0       95.0       24.1       44.0       44.0       44.0       35.0       35.0       95.0         Actuated g/C Ratio       0.45       1.00       0.25       0.46       0.46       0.37       0.37       1.00         v/c Ratio       0.96       0.09       0.14       0.74       0.62       0.02       0.09       0.93       0.45         Control Delay       57.9       0.1       16.0       44.6       21.4       0.2       23.0       42.7       1.0         Dueue Delay       57.9       0.1       16.0       44.6       21.4       0.2                                                                                                                                                                                                                 |                                       |           |     |              |      |          |           |             |      |          |             |      |
| Lost Time Adjust (s)       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0       -3.0         Total Lost Time (s)       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0         Lead/Lag       Lead       Lead       Lag       Lag       Lag         Recall Mode       None       None       None       None       Min       Min       Min         Act Effct Green (s)       43.0       95.0       24.1       44.0       44.0       35.0       35.0       95.0         Actuated g/C Ratio       0.45       1.00       0.25       0.46       0.46       0.37       0.37       1.00         V/c Ratio       0.96       0.09       0.14       0.74       0.62       0.02       0.09       0.93       0.45         Control Delay       57.9       0.1       16.0       44.6       21.4       0.2       23.0       42.7       1.0         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                      |                                       |           |     |              |      |          |           |             |      |          |             |      |
| Total Lost Time (s)       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0<                                                                                                                                                                                                                |                                       | 2.0       |     |              | 2.0  |          |           |             |      |          |             |      |
| Lead/Lag       Lag       Lag       Lag         Lead-Lag Optimize?       Recall Mode       None       None       None       None       Min       Min       Min       Min         Act Effct Green (s)       43.0       95.0       24.1       44.0       44.0       44.0       35.0       35.0       95.0         Actuated g/C Ratio       0.45       1.00       0.25       0.46       0.46       0.46       0.37       0.37       1.00         v/c Ratio       0.96       0.09       0.14       0.74       0.62       0.02       0.09       0.93       0.45         Control Delay       57.9       0.1       16.0       44.6       21.4       0.2       23.0       42.7       1.0         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                     | , , ,                                 |           |     |              |      |          |           |             |      |          |             |      |
| Lead-Lag Optimize?         None         None         None         None         Nin         Min                                                                                                                    |                                       |           | 4.0 |              |      | 4.0      |           | 4.0         | 4.0  |          |             |      |
| Recall Mode         None         None         None         None         Min         Min         Min         Min           Act Effct Green (s)         43.0         95.0         24.1         44.0         44.0         35.0         35.0         95.0           Actuated g/C Ratio         0.45         1.00         0.25         0.46         0.46         0.37         0.37         1.00           v/c Ratio         0.96         0.09         0.14         0.74         0.62         0.02         0.09         0.93         0.45           Control Delay         57.9         0.1         16.0         44.6         21.4         0.2         23.0         42.7         1.0           Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                           |                                       |           |     |              |      |          | Lead      |             |      | Lag      | Lag         |      |
| Act Effct Green (s)       43.0       95.0       24.1       44.0       44.0       35.0       35.0       95.0         Actuated g/C Ratio       0.45       1.00       0.25       0.46       0.46       0.46       0.37       0.37       1.00         v/c Ratio       0.96       0.09       0.14       0.74       0.62       0.02       0.09       0.93       0.45         Control Delay       57.9       0.1       16.0       44.6       21.4       0.2       23.0       42.7       1.0         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                  |                                       |           |     |              |      |          |           |             |      |          |             |      |
| Actuated g/C Ratio       0.45       1.00       0.25       0.46       0.46       0.37       0.37       1.00         v/c Ratio       0.96       0.09       0.14       0.74       0.62       0.02       0.09       0.93       0.45         Control Delay       57.9       0.1       16.0       44.6       21.4       0.2       23.0       42.7       1.0         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                         |                                       | None      |     |              | None |          |           |             |      |          |             |      |
| v/c Ratio       0.96       0.09       0.14       0.74       0.62       0.02       0.09       0.93       0.45         Control Delay       57.9       0.1       16.0       44.6       21.4       0.2       23.0       42.7       1.0         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                              |                                       |           |     |              |      |          |           |             |      |          |             |      |
| Control Delay       57.9       0.1       16.0       44.6       21.4       0.2       23.0       42.7       1.0         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0         Total Delay       57.9       0.1       16.0       44.6       21.4       0.2       23.0       42.7       1.0         LOS       E       A       B       D       C       A       C       D       A         Approach Delay       45.7       16.0       23.9       27.7       A         Approach LOS       D       B       C       C       C       C         Intersection Summary       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C                                                                                                                                                                                                                                                                                                      |                                       |           |     |              |      |          |           |             |      |          |             |      |
| Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<> |                                       |           |     |              |      |          |           |             |      |          |             |      |
| Total Delay       57.9       0.1       16.0       44.6       21.4       0.2       23.0       42.7       1.0         LOS       E       A       B       D       C       A       C       D       A         Approach Delay       45.7       16.0       23.9       27.7         Approach LOS       D       B       C       C       C         Intersection Summary       C       C       C       C         Cycle Length: 95       Actuated Cycle Length: 95       V       V       V       V         Natural Cycle: 90       Control Type: Actuated-Uncoordinated       V       V       V       V       V         Maximum v/c Ratio: 0.96       Intersection LOS: C       Intersection LOS: C       V       V       V       V         Intersection Capacity Utilization 94.0%       ICU Level of Service F       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V                                                                                                                                                                                                                                   | 3                                     |           |     |              |      |          |           |             |      |          |             |      |
| LOSEABDCACDAApproach Delay45.716.023.927.7Approach LOSDBCCIntersection SummaryCycle Length: 95Actuated Cycle Length: 95Natural Cycle: 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                                     |           |     |              |      |          |           |             |      |          |             |      |
| Approach Delay45.716.023.927.7Approach LOSDBCCIntersection SummaryCycle Length: 95Actuated Cycle Length: 95Actuated Cycle: 90Control Type: Actuated-UncoordinatedMaximum v/c Ratio: 0.96Intersection LOS: CIntersection Capacity Utilization 94.0%ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |           |     |              |      |          |           |             |      |          |             |      |
| Approach LOSDBCCIntersection SummaryCycle Length: 95Actuated Cycle Length: 95Natural Cycle: 90Control Type: Actuated-UncoordinatedMaximum v/c Ratio: 0.96Intersection Signal Delay: 29.6Intersection LOS: CIntersection Capacity Utilization 94.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |           |     | A            |      |          | D         |             | A    | С        |             | A    |
| Intersection Summary Cycle Length: 95 Actuated Cycle Length: 95 Natural Cycle: 90 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.96 Intersection Signal Delay: 29.6 Intersection LOS: C Intersection Capacity Utilization 94.0% ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |           |     |              |      |          |           |             |      |          |             |      |
| Cycle Length: 95<br>Actuated Cycle Length: 95<br>Natural Cycle: 90<br>Control Type: Actuated-Uncoordinated<br>Maximum v/c Ratio: 0.96<br>Intersection Signal Delay: 29.6 Intersection LOS: C<br>Intersection Capacity Utilization 94.0% ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Approach LOS                          |           | D   |              |      | В        |           | С           |      |          | С           |      |
| Actuated Cycle Length: 95         Natural Cycle: 90         Control Type: Actuated-Uncoordinated         Maximum v/c Ratio: 0.96         Intersection Signal Delay: 29.6         Intersection Capacity Utilization 94.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |           |     |              |      |          |           |             |      |          |             |      |
| Natural Cycle: 90         Control Type: Actuated-Uncoordinated         Maximum v/c Ratio: 0.96         Intersection Signal Delay: 29.6         Intersection Capacity Utilization 94.0%         ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 5                                   |           |     |              |      |          |           |             |      |          |             |      |
| Control Type: Actuated-Uncoordinated         Maximum v/c Ratio: 0.96         Intersection Signal Delay: 29.6         Intersection Capacity Utilization 94.0%         ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |           |     |              |      |          |           |             |      |          |             |      |
| Maximum v/c Ratio: 0.96Intersection LOS: CIntersection Capacity Utilization 94.0%ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |           |     |              |      |          |           |             |      |          |             |      |
| Intersection Signal Delay: 29.6Intersection LOS: CIntersection Capacity Utilization 94.0%ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | ordinated | k   |              |      |          |           |             |      |          |             |      |
| Intersection Capacity Utilization 94.0% ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |           |     |              |      |          |           |             |      |          |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |           |     |              |      |          |           |             |      |          |             |      |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | ion 94.0% | 6   |              | 10   | CU Level | of Servic | e F         |      |          |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analysis Period (min) 15              |           |     |              |      |          |           |             |      |          |             |      |

#### Splits and Phases: 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access



# Queues 1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access 2/26/2014

|                        | <b>→</b> | $\mathbf{i}$ | ←     | 1     | 1     | 1    | 1    | ţ      | ~     |
|------------------------|----------|--------------|-------|-------|-------|------|------|--------|-------|
| Lane Group             | EBT      | EBR          | WBT   | NBL   | NBT   | NBR  | SBL  | SBT    | SBR   |
| Lane Group Flow (vph)  | 476      | 128          | 24    | 119   | 929   | 7    | 7    | 1138   | 638   |
| v/c Ratio              | 0.96     | 0.09         | 0.14  | 0.74  | 0.62  | 0.02 | 0.09 | 0.93   | 0.45  |
| Control Delay          | 57.9     | 0.1          | 16.0  | 44.6  | 21.4  | 0.2  | 23.0 | 42.7   | 1.0   |
| Queue Delay            | 0.0      | 0.0          | 0.0   | 0.0   | 0.0   | 0.0  | 0.0  | 0.0    | 0.0   |
| Total Delay            | 57.9     | 0.1          | 16.0  | 44.6  | 21.4  | 0.2  | 23.0 | 42.7   | 1.0   |
| Queue Length 50th (m)  | 85.7     | 0.0          | 2.8   | 12.9  | 68.5  | 0.0  | 0.9  | 109.1  | 0.0   |
| Queue Length 95th (m)  | #152.8   | 0.0          | 6.7   | #33.3 | 89.3  | 0.0  | 4.3  | #152.8 | 0.0   |
| Internal Link Dist (m) | 704.1    |              | 111.7 |       | 173.7 |      |      | 579.0  |       |
| Turn Bay Length (m)    |          | 50.0         |       | 90.0  |       | 30.0 | 30.0 |        | 120.0 |
| Base Capacity (vph)    | 498      | 1456         | 294   | 161   | 1502  | 365  | 82   | 1229   | 1428  |
| Starvation Cap Reductn | 0        | 0            | 0     | 0     | 0     | 0    | 0    | 0      | 0     |
| Spillback Cap Reductn  | 0        | 0            | 0     | 0     | 0     | 0    | 0    | 0      | 0     |
| Storage Cap Reductn    | 0        | 0            | 0     | 0     | 0     | 0    | 0    | 0      | 0     |
| Reduced v/c Ratio      | 0.96     | 0.09         | 0.08  | 0.74  | 0.62  | 0.02 | 0.09 | 0.93   | 0.45  |
|                        |          |              |       |       |       |      |      |        |       |

#### Intersection Summary

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

# HCM Signalized Intersection Capacity Analysis

1: Hespeler Road (RR24)/Wellington Road 124 & Kossuth Road (RR31)/Pit Access 2/26/2014

|                                   | ≯    | +     | $\rightarrow$ | *    | ł         | *         | •       | 1            | 1    | 1    | Ŧ           | ~     |
|-----------------------------------|------|-------|---------------|------|-----------|-----------|---------|--------------|------|------|-------------|-------|
| Movement                          | EBL  | EBT   | EBR           | WBL  | WBT       | WBR       | NBL     | NBT          | NBR  | SBL  | SBT         | SBR   |
| Lane Configurations               |      | र्स   | 1             |      | 4         |           | ٦.      | - <b>†</b> † | 1    | ሻ    | - <b>††</b> | 7     |
| Volume (vph)                      | 422  | 6     | 115           | 7    | 7         | 7         | 107     | 836          | 6    | 6    | 1024        | 574   |
| Ideal Flow (vphpl)                | 1650 | 1650  | 1750          | 1550 | 1550      | 1550      | 1775    | 1900         | 1750 | 1775 | 1900        | 1750  |
| Total Lost time (s)               |      | 4.0   | 1.0           |      | 4.0       |           | 4.0     | 4.0          | 4.0  | 4.0  | 4.0         | 1.0   |
| Lane Util. Factor                 |      | 1.00  | 1.00          |      | 1.00      |           | 1.00    | 0.95         | 1.00 | 1.00 | 0.95        | 1.00  |
| Frt                               |      | 1.00  | 0.85          |      | 0.95      |           | 1.00    | 1.00         | 0.85 | 1.00 | 1.00        | 0.85  |
| Flt Protected                     |      | 0.95  | 1.00          |      | 0.98      |           | 0.95    | 1.00         | 1.00 | 0.95 | 1.00        | 1.00  |
| Satd. Flow (prot)                 |      | 1475  | 1456          |      | 720       |           | 1603    | 3245         | 735  | 834  | 3336        | 1428  |
| Flt Permitted                     |      | 0.71  | 1.00          |      | 0.88      |           | 0.11    | 1.00         | 1.00 | 0.25 | 1.00        | 1.00  |
| Satd. Flow (perm)                 |      | 1102  | 1456          |      | 642       |           | 188     | 3245         | 735  | 223  | 3336        | 1428  |
| Peak-hour factor, PHF             | 0.90 | 0.90  | 0.90          | 0.90 | 0.90      | 0.90      | 0.90    | 0.90         | 0.90 | 0.90 | 0.90        | 0.90  |
| Adj. Flow (vph)                   | 469  | 7     | 128           | 8    | 8         | 8         | 119     | 929          | 7    | 7    | 1138        | 638   |
| RTOR Reduction (vph)              | 0    | 0     | 0             | 0    | 4         | 0         | 0       | 0            | 4    | 0    | 0           | 0     |
| Lane Group Flow (vph)             | 0    | 476   | 128           | 0    | 20        | 0         | 119     | 929          | 3    | 7    | 1138        | 638   |
| Heavy Vehicles (%)                | 4%   | 100%  | 1%            | 100% | 100%      | 100%      | 4%      | 10%          | 100% | 100% | 7%          | 3%    |
| Turn Type                         | Perm | NA    | Free          | Perm | NA        |           | pm+pt   | NA           | Perm | Perm | NA          | Free  |
| Protected Phases                  |      | 4     |               |      | 8         |           | 5       | 2            |      |      | 6           |       |
| Permitted Phases                  | 4    |       | Free          | 8    |           |           | 2       |              | 2    | 6    |             | Free  |
| Actuated Green, G (s)             |      | 40.0  | 95.0          |      | 40.0      |           | 41.0    | 41.0         | 41.0 | 32.0 | 32.0        | 95.0  |
| Effective Green, g (s)            |      | 43.0  | 95.0          |      | 43.0      |           | 41.0    | 44.0         | 44.0 | 35.0 | 35.0        | 95.0  |
| Actuated g/C Ratio                |      | 0.45  | 1.00          |      | 0.45      |           | 0.43    | 0.46         | 0.46 | 0.37 | 0.37        | 1.00  |
| Clearance Time (s)                |      | 7.0   |               |      | 7.0       |           | 4.0     | 7.0          | 7.0  | 7.0  | 7.0         |       |
| Vehicle Extension (s)             |      | 5.0   |               |      | 5.0       |           | 5.0     | 5.0          | 5.0  | 5.0  | 5.0         |       |
| Lane Grp Cap (vph)                |      | 498   | 1456          |      | 290       |           | 155     | 1502         | 340  | 82   | 1229        | 1428  |
| v/s Ratio Prot                    |      |       |               |      |           |           | 0.04    | 0.29         |      |      | c0.34       |       |
| v/s Ratio Perm                    |      | c0.43 | 0.09          |      | 0.03      |           | 0.29    |              | 0.00 | 0.03 |             | c0.45 |
| v/c Ratio                         |      | 0.96  | 0.09          |      | 0.07      |           | 0.77    | 0.62         | 0.01 | 0.09 | 0.93        | 0.45  |
| Uniform Delay, d1                 |      | 25.1  | 0.0           |      | 14.7      |           | 21.9    | 19.2         | 13.8 | 19.6 | 28.8        | 0.0   |
| Progression Factor                |      | 1.00  | 1.00          |      | 1.00      |           | 1.00    | 1.00         | 1.00 | 1.00 | 1.00        | 1.00  |
| Incremental Delay, d2             |      | 29.8  | 0.1           |      | 0.2       |           | 23.2    | 1.1          | 0.0  | 0.9  | 12.3        | 1.0   |
| Delay (s)                         |      | 54.8  | 0.1           |      | 14.9      |           | 45.1    | 20.3         | 13.8 | 20.5 | 41.1        | 1.0   |
| Level of Service                  |      | D     | А             |      | В         |           | D       | С            | В    | С    | D           | A     |
| Approach Delay (s)                |      | 43.2  |               |      | 14.9      |           |         | 23.0         |      |      | 26.7        |       |
| Approach LOS                      |      | D     |               |      | В         |           |         | С            |      |      | С           |       |
| Intersection Summary              |      |       |               |      |           |           |         |              |      |      |             |       |
| HCM 2000 Control Delay            |      |       | 28.4          | Н    | CM 2000   | Level of  | Service |              | С    |      |             |       |
| HCM 2000 Volume to Capacity ratio |      |       | 0.93          |      |           |           |         |              |      |      |             |       |
| Actuated Cycle Length (s)         |      |       | 95.0          |      | um of los |           |         |              | 12.0 |      |             |       |
| Intersection Capacity Utilization | ١    |       | 94.0%         | IC   | CU Level  | of Servic | e       |              | F    |      |             |       |
| Analysis Period (min)             |      |       | 15            |      |           |           |         |              |      |      |             |       |
| c Critical Lane Group             |      |       |               |      |           |           |         |              |      |      |             |       |

**Appendix G** Curriculum Vitae



# William C. Maria, P.Eng. Transportation Engineer



Qualified. Ryerson University, Toronto, ON. Bachelor of Engineering, in Civil Engineering. 1998.

Connected. Member, Professional Engineers of Ontario, Institute of Transportation Engineers (ITE)

Relevance to project. Will's services to clients include: transportation planning; traffic engineering and parking; site traffic analysis; urban transit operations and project management. He has 15 years of experience in the traffic, parking and transportation planning fields.

Transportation Planning and Functional Design in the Multi-modal Context

Cooksville GO Station | Transportation Study | Mississauga, ON, Canada Provided traffic impact study with a design assessment for temporary parking access for the proposed expansion to the existing parking lot. Provided parking traffic generation characteristics, existing and future traffic models in the GO peak hours, optimized the signalized future traffic operational characteristics and prepared functional circulation plans for buses and pedestrians.

#### Erindale GO Station | Transportation

Study | Mississauga, ON, Canada Determined the traffic impact of a parking expansion on the operation of the only access intersection, internal traffic patterns and bus circulation and delay. The study included alternative functional designs with consideration of drive aisle lane configurations to improve peak period circulation and pedestrian connectivity.

#### Richmond Hill GO Station |

Transportation Study | Richmond Hill,

#### ON, Canada

Undertook a traffic impact analysis of a proposed expansion to the existing parking lot on the various closely spaced access intersections. The analysis included an operation analysis with detailed optimization of the traffic signal coordination to manage the peak period queuing characteristics. The study also included functional design of the lane configuration and pedestrian crossing in the Newkirk Road corridor.

Rutherford GO Station | Transportation Study | Vaughan, ON, Canada Undertook an analysis to determine the traffic impact of a shared access for drop-off/pick-up with the bus loop and the traffic progression on Rutherford Road. The impact of a parking expansion on the operations of the two access intersections was also reviewed. The project also included a functional design improvement of Westbourn Drive to manage the peak period queuing characteristics.

# Additional studies at GO Stations include:

Rouge Hill, Bronte, Aldershot, Streetsville, Meadowvale, Maple, York University, Langstaff, Old Cummer.

Transportation Operations/Corridor Studies

Hurontario/Hwy 401 Off-Ramp Extension

| Mississauga, ON, Canada Developed a network simulation using Synchro 4.0 to determine the effectiveness of a collector road connection opposite the Highway 401 E-NS Ramp. Further analysis was undertaken by modeling the study area in integration and examining traffic redistribution due to congestion.





Highway 7, Highway 410 to Kennedy Road | Mississauga, ON, Canada Participated in a study that examined the traffic operation through this corridor of Highway 7 and recommended mitigative measure to optimize traffic flow due to new developments.

Centrillium in Emery Village, Weston Road at Finch Avenue | Toronto, ON,

#### Canada

Completed an extensive analysis of existing and future traffic conditions for the development of a 1,300 unit condominium complex, which included a sensitivity analysis for other developments in the area.

Finch Weston – Medallion, Weston Road at Finch Avenue | Toronto, ON, Canada Completed an extensive analysis of existing and future traffic conditions for the development of a 1,500 unit condominium complex.

Neighborhood 408 Traffic Calming Study Region of Peel, ON, Canada Participated in a study to develop options for traffic calming measures to reduce traffic speeds.

Preliminary/Detail Design Studies/Environmental Assessments

Highway 7A/115/28 Interchange |

Peterborough, ON, Canada Examined the existing and future traffic volumes at the 115/28/7A interchange and approaching Highway and County Road links, as a component of the Ministry's rehabilitation project for the Highway 28 / 117 Northbound Overpass Structure. Developed a network simulation of the Interchange to review different options for traffic staging during construction.

Highway 7 | Peterborough, ON, Canada Developed a network simulation of Highway 7 using the software package NETSIM which is part of the Traffic Software Integrated System produced by the Federal Highway Administration. The purpose of the simulation was to determine the effectiveness of different options to accommodate the future traffic growth.

Highway 77, West junction of Essex County Road 8 at Staples, Northerly 9.1 km to Essex County Road 46 at Comber

Essex, ON, Canada

Assessed the traffic impact on possible detour routes during rehabilitation of Highway 77 and made recommendations to optimize traffic flow.

Development Impact Assessments Completed the following Traffic Impact and Parking studies:

- Petrolia Landfill Site, Petrolia.
- Glenridge Quarry Landfill Site, St. Catharines
- Erin Mills Development, Mississauga
- George Street Condominiums, Brampton
- Brampton Business Park, Region of Peel.
- Line 5 Landfill Site, Town of Niagara-on-the-Lake
- Ghanaian Presbyterian Church, North York
   District
- Greater Toronto Airport Authority, Derry Road/Bramalea Road Development
- Atomic Ave./The Queensway, Toronto
- Zenith Property, Toronto
- Mississauga Road/QEW, City of Mississauga

#### Parking Studies

- Wexford Centre, Scarborough
- York County Hospital, City of Vaughan
- Canadian Tire, Town of Pickering
- Dufferin Steeles Power Centre
- Yonge St./Clark St. Development, City of Vaughan

#### Key Areas of Experience:

- Urban Transportation Studies
- Transportation Impact Studies and Parking
   Utilization Studies
- Transportation Demand Management Studies
- Roads and Highway Design
- Strategic Advisory
- Development Charge By-law Review



# James A. Bacchus, B.A., MITE Service Group Manager, Transportation



Qualified. Saint Mary's University, Halifax, NS. Bachelor of Arts. 1991 Connected. Member, Institution of Transportation Engineers (ITE), Transportation Planning Council Member, Traffic Engineering Council Member, Parking Council Member, Expert Witness Council Member

Relevance to project. Jim is the Service Group Manager for the Transportation Sector in Canada. His services to clients include transportation planning, traffic engineering, expert testimony, and project management. He has 20 years' experience in the transportation planning field.

Jim's considerable domestic and international experience has consisted of the marketing, project management, and preparation of transportationrelated studies in support of small and large-scale private development applications and public infrastructure projects. Assignments have included identification and mitigation of traffic impacts from land development, and preparation of conceptual roadway / highway layouts, site access schemes, internal circulation systems, plus queuing studies, speed studies, and parking needs reviews. In addition, key public sector experience includes Traffic Calming, Class EA's, Transportation Master Plan Studies, Corridor Studies, Secondary Planning Studies, Urban / Suburban Parking Studies, and Transit Studies.

**Relevant Projects** 

- Yonge Steeles Corridor Study, Town of Markham
- Downtown Parking Study, comprehensive parking analysis, City of Orillia
- Comprehensive Road Inventory and Needs Assessment for Public Schools, Region of Durham
- Green Lane GO Station EA, Traffic Impact Study, Town of East Gwillimbury
- Peel Regional Headquarters Expansion, Traffic Impact and Parking Demand Study, Region of Peel
- Audley Road Class Environmental Assessment (Transportation Study), Town of Ajax

- Thickson Road Class Environmental Assessment (Transportation Study), Region of Durham
- Keele/McNaughton Class Environmental Assessment (Transportation Study), Region of York
- Fairall Street Class Environmental Assessment (Transportation Study), Town of Ajax
- Seaton Community, Transit Implementation Plan, City of Pickering
- Seaton Community, MESP/Transportation Study, City of Pickering
- BramWest Secondary Plan, Riverview Heights System Alternatives Assessment, City of Brampton
- Waste Management, Haul Route Impact Study, Richmond & Warwick Landfill Expansions
- Britannia Landfill, Landfill Expansion, City of Mississauga
- West Gormley, MESP/Transportation Study, Town of Richmond Hill
- Carrville District Centre, Transportation Study, City of Vaughan
- Fletcher's Meadow Community, City of Brampton
- Leitchcroft Farms Master Plan, Town of Richmond Hill
- Escarpment Business Community, Traffic Impact Study, Town of Milton
- Foster Creek Subdivision, Traffic Impact Study and Traffic Calming Concepts, Town of Newcastle



- Victoria Business Park, Traffic Impact Study, Town of Caledon
- Royal Empress Gardens, Traffic Impact & Parking Study, City of Vaughan Corporate Centre
- Wayne Gretzky Parkway Retail Mall, Traffic Impact and Parking Study, City of Brantford
- Toronto Congress Centre, Traffic Impact and Parking Study, City of Toronto (Etobicoke)
- ClubLink Properties Inc., Kinghaven Golf and Country Club, King City
- Aggregate Extraction (Pits & Quarries), Truck Haul Route and Traffic Impact Analyses, multiple sites throughout Ontario
- Port of Spain East-West Corridor Transportation Study, Trinidad and Tobago

#### Relevant Projects - Middle East

- Dubai City Comprehensive Transportation Master Plan, Dubai, United Arab Emirates (U.A.E.)
- *Burj Dubai Community, Traffic Impact Study,* Dubai, U.A.E.
- Emirates Airlines Operations Centre & Headquarters, Traffic Impact Study, Dubai, U.A.E.
- Dubai Festival City, Traffic Impact Study, Dubai, U.A.E.
- Dubai Health Care City, Traffic Impact Study, Dubai, U.A.E.
- Jumeirah Islands Gardens, Traffic Impact Study, Dubai, U.A.E.
- Al Rashidiya Community, Traffic Impact & On Street Parking Study, Dubai, U.A.E.
- Arabian Ranches, Traffic Impact Study, Dubai, U.A.E.
- Al Bahia Corniche, Traffic Impact Study, Abu Dhabi, U.A.E.
- Doha City Centre Mall Expansion, Traffic Impact and Parking Study, Doha Qatar
- Qatar Petroleum Education City, Traffic Impact Study, Doha, Qatar
- Al Waab Community, Traffic Impact Study, Doha, Qatar
- Al Ain Hospital, Traffic Impact Study and Road Network Layout, Al Ain, U.A.E.

#### Specialized Training

- Canadian Capacity Guide Seminar
- Institute of Transportation Engineers (ITE)
- Canadian Guide to Traffic Calming Seminar, ITE
- Professional Traffic Operations Engineer (PTOE)
- Preparation Course, ITE
- Pedestrian and Bicycling Seminar, ITE
- Project Manager's Bootcamp, PSMJ Resources Inc.
- Traffic Calming Seminar, Recommended
   Practices, ITE
- Transportation Impact Analyses for Site Development, ITE
- Management and Leadership Training, Ontario Society of Professional Engineers
- Trip Generation, Advanced Concepts and Applications Seminar, ITE
- Professional Transportation Planner (PTP)
   Preparation Course, ITE
- Principal's Bootcamp, PSMJ Resources Inc.

Case Study (2004) – National Society of Engineers, United Arab Emirates *Burj Dubai.* Transportation Assessment and Mitigation for the World's Tallest Tower and Largest Retail Mall.

Other related areas of interest

- IT savvy. SYNCHRO/SIMTRAFFIC, VISSIM, SIDRA, HCS, HiCAP, CCGCALC, MTOP, and FORTRAN signal progression
- Modelling. TRANSCAD, EMME and VISUM



# Hong Shen, M.Eng., P.Eng. Transportation Engineer



Qualified. University of Waterloo, Waterloo, ON. Masters of Civil Engineering (Transportation). 2007. University of Tongji, Shanghai, China. Bachelor of Road and Traffic Engineering. 1984.

Connected. Member, Professional Engineers of Ontario. Relevance to project. Hong has over 25 years' experience in transportation planning and engineering internationally. He has extensive knowledge with the development of transportation master plans, area modelling studies, traffic impact assessments, transit planning, parking studies and roadway design.

#### Relevant Project Experience

- SmartCentres Barrie (S) Wal-Mart Expansion, Traffic Impact Study, City of Barrie
- Vaughan Valley Centre Expansion, Traffic Impact Study, City of Vaughan
- SmartCentres Innisfil Commercial Development, Traffic Impact Study, Town of Innisfil
- Jai Durga Hindu Centre Traffic Impact Study, City of Toronto
- Aurora Smart Centres Traffic Monitoring Study, Town of Aurora
- Jane Osler Boulevard Residential
   Development, Traffic Impact Study, City of
   Toronto
- Keele Finch Bus Terminal Impacts for Metropolitan Toronto Condominium, Traffic Study, City of Toronto
- 50 Page Avenue Traffic Impact Study, City of Toronto
- Aurora Corporate Centre, Traffic Impact Study, Town of Aurora

- Olszowka Pit Traffic Impact Study, County of Brant
- Retail Development, Major Mackenzie Weston, Traffic Impact Study, City of Vaughan
- Golfview Land Development Inc. Subdivision, Traffic Impact Study, City of Pembroke
- Fernbrook Homes Anthem Subdivision, Traffic Impact Study, Town of Caledon
- 39 Green Belt Drive Residential
   Development, Traffic Impact Study, City of
   Toronto
- Metro Centre Residential and Commercial Development, Traffic Impact Study, City of Toronto
- 3132 Eglinton Ave. E. Traffic Operations Assessment & Transportation Impact Study, City of Toronto
- Escarpment Business Community Traffic Impact Study, Town of Milton
- Thickson Road EA, Town of Whitby
- Gorham Street Retirement Residence, Traffic & Parking Study, Town of Newmarket



- Traffic Impact Study Update for West
   Gormley Developments, Town of Richmond
   Hill
- Traffic Impact and Parking Study for Charles/Watson Street Developments, Town of Whitby
- Traffic Impact Study for 15915 Leslie Street
   Mixed Use Development, Town of Aurora
- Transportation Study for Carrville District Centre, City of Vaughan
- Traffic Impact Study for CWB Advanced
   Training Facility, Town of Milton
- Traffic Impact and Site Access Operational Review for Neubauer Gravel Pit, Town of Puslinch
- Traffic Impact Study Update for Jackson's Landing Adult Lifestyle Development, Town of Georgina
- Cedor Manor Homes Traffic Impact Study, Town of Newmarket
- 50 Marmora traffic Study, City of Toronto
- Stoney Creek Urban Boundary Expansion Transportation Master Plan, City of Hamilton
- Oakville Midtown Business and Development Plan (Transportation System), Town of Oakville
- Halton Transportation Master Plan Update, Region of Halton
- Guoyang County Transportation Master Plan, Count of Guoyang, China
- Chaohu Transportation Master Plan, City of Chaohu, China
- Hefei Shibei District Transportation Study, City of Hefei, China
- Anhui Province Roads Planning and Design Standards, China

- Suyu Overpass Access Highway Design, Suzhou City
- Road and Drainage Engineering Design of New Railway Station Road, Suzhou City
- Roundabout Engineering Design of Pingmengiao, Suzhou City
- Reconstruction Engineering Design of South Renmin Road, Suzhou City

#### Presentations

Planning & Design Standards

- Anhui Province Roads Planning and Design Standards
- Anhui Province Residential Area Planning and Design Standards

#### Publications

- Improving the Static Traffic the Construction of Parking Lot, Journal of Contemporary Construction
- Overview of the Urban Plan of Port of Spain, Journal of City Construction Archives Study
- Research on Some Issues of Planning, Design and Construction of Hospitals, Journal of Anhui Architecture

#### Prizes Awarded

- Third Prize Award of Excellent Survey and Design Projects of Anhui Province, Guoyang County Transportation Master Plan
- Third Prize Award of Excellent Design of Suzhu City, Reconstruction Engineering Design of South Renmin Road



# Michael Dowdall, Dipl.T. Transportation Analyst



Qualified. Mohawk College, Hamilton, ON. Transportation Engineering Technology Advanced Diploma, Honours. 2010. Connected. Member: Ontario Association of Certified Technicians and Technologists & Institute of Transportation Engineers. Relevance to project. Michael has been with GHD Inc. for over five years. He is responsible for data assembly and review; undertaking technical analysis for traffic impact studies, parking studies and traffic operational assessments. Services to clients include transportation planning, functional road design, sightline analysis and traffic control plans.

#### Major Urban Expansion Working on behalf of various landowner groups, Michael is currently working on several large scale urban expansions including:

Traffic Analyst | Sherwood Survey (Milton Phase II) | Milton, ON, Canada This urban expansion, predominately on the west side of Milton, is under construction with a planned future population of 45,000.

Traffic Analyst | Boyne Survey (Milton Phase III) | Milton, ON, Canada The next phase of development in south Milton will increase the population by approximately 45,000 persons.

Transportation Analyst | Chinguacousy Farm Residential Subdivision |

#### Brampton, ON, Canada

Prepared a Traffic Impact Study for The Conservatory Group, completed an extensive analysis of future traffic conditions for the development of a 540 unit residential subdivision which satisfied MTO's requirements at the ramp terminals.

Traffic Analyst | Green Ginger

Residential Subdivision | Oakville, ON, Canada

Completed a Traffic Impact Study for Green Ginger Developments Inc. for Draft Plan approval of a 2,000 unit residential subdivision, examined the future capacity and operations of the adjacent regional road network and prepared a Transit Facilities Plan consistent with the Town's transit plan.

#### Traffic Analyst & Designer | 1100 Caledonia Road Commercial Re-

Development | Toronto, ON, Canada Analysed the existing and future traffic volumes on the adjacent road network for Herefordshire Capital Corporation's re-development of an existing commercial building, recommended roadway improvements and completed functional design drawings for the sections of roadway to be improved.

#### Traffic Analyst | 740 & 817 Sheppard Avenue Condominiums | Toronto, ON, Canada

Retained by Royal Lake Sheppard North Ltd. to assess the traffic impacts of two 9–storey condominium buildings including ground floor commercial and prepared Traffic Impact Studies satisfying the City's requirements.

### Traffic Analyst | Laird & Wicksteed Commercial Re-Development | Toronto, ON, Canada

Developed a detailed traffic model for a commercial re-development in the Leaside Community of Toronto for SmartCentres, Synchro traffic model confirmed the future development



can be accommodated on the adjacent road network and subsequently approved by the City of Toronto.

# Designer | Traffic Control Plans | Milton, ON, Canada

Prepared Traffic Control Plans for a variety of residential subdivisions within the Sherwood Survey Secondary Plan in the Town of Milton including;

- Willmott Neighborhood Phase 1 & 2
- Capozzi Neighborhood Phase 2A
- Milton Main Street Homes

#### Traffic Analyst | Brookhill

#### Neighbourhood Residential Subdivision |

Bowmanville, ON, Canada Completed a Traffic Impact Study for the Brookhill Developers Group for Draft Plan approval of a 1,500 unit residential subdivision in the Municipality of Clarington, analysis included extensive re-distribution of traffic, multiple road and development phasing, and intersection functional design.

Traffic Analyst | 70 Old Mill Road Mixed-Use Development | Oakville, ON, Canada Developed a pedestrian circulation plan and assessed the traffic impact of a proposed mixeduse development for the Penalta Group Ltd., the traffic model included existing and future traffic generated from the new Oakville GO parking lot expansion and reviewed the operational and capacity restraints in the Cornwall Road corridor.

#### Traffic Analyst | Dixie Crossing

Commercial | Mississauga, ON, Canada Examined the future traffic volumes generated by the commercial development and prepared a Traffic Impact Study for the Mobius Corporation. With co-operation with the Region of Peel, a design was agreed upon for the site access onto Dixie Road, the study concluded that traffic generated by the proposed 53,693ft<sup>2</sup> of retail and restaurant GFA can be accommodated by the adjacent street system with the implementation of recommended access improvements. Parking Studies

- Shingar Banquet Hall, City of Brampton
- Woodland Court Commercial, Town of Richmond Hill
- Oakville Entertainment Centre, Town of Oakville
- Meadowvale Christian Academy, City of Mississauga
- 2441 Finch Residential, City of Toronto
- Trafalgar Sports Park, Town of Milton
- Rotherglen School, Town of Oakville
- Chinguacousy Road Commercial, City of Brampton
- Eitz Chaim Synagogue, City of Toronto
- Faith of Life Place of Worship, City of Mississauga
- Oakleaf Academy, Town of Oakville
- Orchard Gardens Market, City of Mississauga
- Four Seasons Garden Condominium, Town of Richmond Hill
- Electric Building Condominiums, City of Toronto

#### **Functional Design**

- Highway 9 and First Line Localized Widening Design, Town of Mono
- Derry/Scott Commercial Access Design, Milton
- William Allen Road Commercial Access Design, Toronto
- Caledon-King Townline Residential Intersection Design, Caledon
- 7150 Edwards Boulevard Parking Lot Layout, Mississauga
- Richmond Hill GO Access Design, Vaughan
- Rotherglen School Parking Layout, Oakville
- Steeles and Financial Drive Access Design, Brampton

#### Key Areas of Expertise

- Synchro Traffic Analysis & Sim Traffic Simulation
- Autoturn Vehicle Swept Path Analysis
- Transportation Impact Studies and Parking
   Utilization Studies
- Roads and Highway Functional Design

#### GHD

11 Allstate Parkway, Suite 310 Markham, Ontario L3R 9T8 T: 905-752-4300 F: 905-752-4301 E: ytomail@ghd.com

#### © GHD 2013

This document is and shall remain the property of GHD. The document may only be used for the purpose of assessing our offer of services and for inclusion in documentation for the engagement of GHD. Unauthorised use of this document in any form whatsoever is prohibited.

| Document         |        | Rev        | iewer         | Approved for Issue |           |                  |  |  |
|------------------|--------|------------|---------------|--------------------|-----------|------------------|--|--|
| StatusRev<br>No. | Author | Name       | Signature     | Name               | Signature | Date             |  |  |
| 1                | H Shen | Will Maria | William Masia | Jim Bacchus        | Buch      | April<br>04/2014 |  |  |
|                  |        |            |               |                    |           |                  |  |  |
|                  |        |            |               |                    |           |                  |  |  |

# www.ghd.com

