Book 23 Witness Statement of H. Robert Rimrott

25-Apr-16

Index

<u>Tab</u>	Document
1	Aercoustics Noise Impact Study Nov. 19, 2012
2	Aercoustics Response to Novus Peer Review May 24, 2013
3	Aercoustics Updated Report May 24, 2013
4	Aercoustics Addendum #1 Aug 10, 2015
5	CV- H. Robert Rimrott
6	Executed OMB Experts Duty Form - H. Robert Rimrott

ONTARIO MUNICIPAL BOARD

Commission des affaires municipals de l'Ontario

PROCEEDING COMMENCED UNDER subsection 34(11) of the *Planning Act*, R.S.O. 1990, c. P. 13, as amended

Applicant and Appellant:	James Dick Construction Limited
Subject:	Application to amend Zoning By-law No. 57/1999 - Refusal
	or neglect of Township of Guelph/Eramosa to make a decision
Existing Zoning:	Agriculture (A) and Hazard (H) .
Proposed Zoning:	Extractive Industrial (M3) and Hazard (H)
Purpose:	To permit a quarry
Property Address/Description:	Part Lot 1, Concession 6
Municipality:	Guelph Eramosa
Municipality File No.:	ZBA09/12
OMB Case No.:	PL150494
OMB File No.:	PL150494
OMB Case Name:	James Dick Construction Limited v. Guelph/Eramosa (Township)

PROCEEDING COMMENCED UNDER subsection ,11(5) of the Aggregate Resources Act, R.S.O. 1990, c.

A.8, as amended

Objector: Objector: Objector: Applicant: Subject:	Ron & Debbie Brennen John & Ann Brophy Dennis & Laura Campbell; and others James Dick Construction Limited Application for a Class A licence for the removal of aggregate
Property Address/Description:	Part Lot 1, Concession 6
Municipality:	Guelph Eramosa
OMB Case No.:	PL150494
OMB File No.:	MM150034
OMB Case Name:	James Dick Construction Limited v. Guelph/Eramosa (Township)

WITNESS STATEMENT FOR H. Robert Rimrott

1. The evidence to be presented by H. Robert Rimrott will consist of a presentation and review of the following reports and documents:

Tab No.	Reports/Documents	Date			
1.	Original Noise Impact Study	November 19, 2012			
2.	Response to Peer Review	May 24, 2013			

3.	Updated Noise Impact Study	May 24, 2013
4.	Noise Impact Study Report Addendum #1	August 10, 2015

 In addition, H, Robert Rimrott, will refer to the Ministry and Agency Review Comments and the Township of Guelph-Eramosa Peer Review Comments set out in the Document Books produced and provided by James Dick Construction Limited.

April 14, 2016 Date

Hans Robert Rimrott, P.Eng.

Noise Impact Study

project number: 11007

Acoustics Noise Vibration

Hidden Quarry

Rockwood Ontario

Prepared for:

James Dick Construction Limited

P.O Box 470 Bolton Ontario

Prepared by:

David Grant, B.A.Sc.

Unice of Aur

Vince Gambino, P.Eng.

19 November 2012

50 Ronson Drive, Suite 165 Toronto, ON, Canada M9W 1B3 t 416 249 3361 f 416 249 3613

Table of Contents

1	Introduction	3
2	Background Information	3
3	Criteria and Guidelines	4
4	Recommendations	6
5	Noise Level Predictions	7
6	Conclusions	9

List of Figures

Figure 1: Area Location Map Figure 2A: Stage 1 Site Plan Figure 2B: Stage 2 Site Plan Figure 3: Recommended Mitigation

List of Tables

Table 1: Summary of Receptor Classes Table 2: Daytime Performance Limit Summary for Class 2 Receptors Table 3: Summary of Sound Level Performance Limits for All Receptors Table 4: Recommended Stockpile Height and Position Table 5: Summary of Stationary Source Sound Power Levels Table 6: Summary of Predicted Impacts

List of Appendices

Appendix A: Zoning Map Appendix B: Sound Power Data Appendix C: Sample Cadnaa Calculations Appendix D: CVs

1 Introduction

Aercoustics Engineering Limited has been retained by James Dick Construction Limited to carry out an environmental noise impact study for the subject quarry in the Township of Guelph-Eramosa, Ontario.

The purpose of this study is to assess the noise impact of the proposed quarry on the neighbouring residences. It has been prepared in accordance with the Aggregate Resources Act requirement for noise assessment. An area location map is given in Figure 1 which illustrates the designated calculation locations for processing noise (i.e. R1 through R19). An operational plan is shown in Figure 2A and 2B which identifies the extraction boundaries, phasing, equipment locations, and proposed direction of extraction.

2 Background Information

The background information used in evaluating the noise impact of this quarry is taken from the Aercoustics Engineering Limited database which comprises information obtained from acoustic performance measurement surveys conducted for numerous processing plants, pits, and quarries throughout Ontario. The proposed equipment type and operation is similar to a number of other sites such as the Rockfort Quarry which is also owned and operated by James Dick Construction Limited. In order to assess the noise and vibration impact of the proposed quarry, it was necessary to conduct site and terrain specific noise modelling of work patterns, phasing and proposed equipment operation. Operation of peak period activity under both start-up conditions and operation at the extraction limits were modelled at the designated calculation locations identified in this study.

Site-specific information pertaining to this proposed quarry is as follows:

- 1. The proposed hours of full operation are normally:
 - 0600-1800 hours for shipping
 - 0700-1900 for drilling, processing, and extraction
- 2. The quarry extraction stages will be phased as shown in Figure 2A and 2B, with sand and gravel extraction occurring during Stage 1, and dolomite extraction occurring in Stage 2.
- 3. The operation will entail the use of the following equipment:
 - processing plant, crusher, screens, wash plant (700,000 tonnes per year)
 - delivery trucks
 - 1 extraction front end loader
 - 1 sales/shipping loader
 - 1 dragline (8 yard)

- 1 hydraulic drill
- Bulldozer/backhoe/scraper for site preparation and construction
- 3 rock trucks.
- 4. There are no fish spawning beds in the vicinity of the quarry.

3 Criteria and Guidelines

The noise impact methodology used in this study is based on sound and vibration impact guidelines stipulated by MOE in publications NPC-205/232/233, and the Aggregate Resources Act. MOE publication NPC-115 has also been referenced accordingly in order to address construction noise due to site preparation activities such as berm construction. The MOE Guidelines for noise and vibration impact are included in Appendix A of this report.

In addition, ISO standard 9613-2 on sound propagation outdoors has been used to further substantiate the environmental noise assessment presented in this study.

3.1 Ambient Noise Assessment

The existing noise environment comprises mostly natural sounds, as well as road traffic noise on Highway 7, 6th Line and 5th Line. The sound level criteria at points of reception are set by the guidelines in MOE publications NPC-205/232. According to these publications, the applicable sound level limit is the greater of the lowest 1-hour Leq measured at the critical receptor or the MOE defined limit for that class designation.

Nineteen sensitive points of reception have been identified surrounding the proposed Quarry. The locations and assigned ID#s for each receptor are labelled in the Figure 1 Area Location Map.

Receptors R1, R2, R10, and R12 to R16 are exposed to elevated levels of traffic noise from Highway 7. These receptors are considered to exist in a Class 2 area, as defined by the MOE, while all others are considered to exist in a Class 3 area. Receptor classes are summarized in the following table:

	Receptor	ID	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17		R19
MOE Ac	oustical	2	•	•								•		•	•	•	•	•			
	Class	3			•	•	•	•	•	•	•		•						•	•	•

Table 1: Summary of Receptor Classes

Daytime performance limits have been established for some of these receptors based on STAMSON prediction calculations, using Ministry of Transportation (MTO) annual average daily traffic (AADT) volume data from 2007. The predicted daytime background noise level due to Highway 7 traffic at these receptors is given in Table 2. Sample calculations are provided in Appendix C.

aercoustics engineering limited

Table 2: Daytime Performance Limit Summary for Class 2 Receptors

Receptor ID	Daytime (07:00-19:00) Performance Limit (dBA)
R2	51
R10	53
R14	53
R16	57

The applicable sound level performance limit for each receptor is summarized in Table 3:

Table 3: Summary of Sound Level Performance Limits for All Recept							
	Daytime	Evening	Night time				
Receptor	(07:00-19:00)	(19:00-23:00)	· · · ·				
ID	dBA	dBA	dBA				
R1	50	45	45				
R2	51	45	45				
R3	45	40	40				
R4	45	40	40				
R5	45	40	40				
R6	45	40	40				
R7	45	40	40				
R8	45	40	40				
R9	45	40	40				
R10	53	45	45				
R11	45	40	45				
R12	50	45	45				
R13	50	45	45				
R14	53	45	45				
R15	50	45	45				
R16	57	45	45				
R17	45	40	40				
R18	45	40	40				
R19	45	40	40				

Table 3: Summary of Sound Level Performance Limits for All Receptors

The receptor height used for calculation purposes is 1.5m above the receptor area grade.

3.2 Construction and Site Preparation/Rehabilitation Noise

Construction and site preparation/rehabilitation activities will be occurring during various stages of quarrying and will include activities such as site clearing and berm construction. These activities will occur as preparation for the various stages of the operation.

These activities are considered to be exempt from satisfying the MOE stationary noise source guidelines (i.e., 'non-stationary' noise source); namely publication NPC-205/232. All construction equipment must meet the sound emission standards defined in MOE publication NPC-115. The relevant background information on non-stationary noise sources as well as publication NPC-115 is

aercoustics.com

given in MOE Model Municipal Noise Control Bylaw, 1978 as well as the sound source exclusions defined in MOE publications NPC 205/232, 1995, included in Appendix A.

4 **Recommendations**

The following recommendations are provided in order to meet the applicable criteria:

 12m and 10m high stockpiles should be maintained in certain locations around the processing plant for each phase and stage. The stockpile peaks should be located no further than 30m from the processing plant, and should be located such that, in plan, they block line-of-sight between processing plant equipment and sensitive receptors, as described in the table below:

Table / Basammanded Staal nile Height and De	oition
Table 4: Recommended Stockpile Height and Po	SILION

Stockpiles Positioned to Shield Receptor IDs	Minimum Stockpile Height (m)
R1, R15, R16, R17, R18	10
R3, R4, R5, R11, R19	12

This configuration is illustrated on Figure 3.

- A quiet drill with a maximum sound power rating of 112dBA should be used. This corresponds to a maximum sound pressure level rating of 75dBA at 30 meters.
- Earth berms should be constructed to the elevations shown and located as shown on Figure 3.
- The recommended direction of extraction is indicated on Figure 3.
- The permanent processing plant area should be established at an elevation of 349m, and a haul route trench connecting the processing plant area to the Stage 1 Phase 1 extraction area should be excavated to the same 349m elevation.
- All construction equipment used in site preparation/construction must meet the sound emission standards defined in MOE publication NPC-115. The relevant background information on nonstationary noise sources as well as publication NPC-115 is given in MOE Model Municipal Noise Control Bylaw, 1978 as well as the sound source exclusions defined in MOE publications NPC 205/232, 1995, included in the attached.

5 Noise Level Predictions

The general operation of the proposed quarry is discussed in Section 2.0. Equipment sound power levels and source heights are listed in Table 5 and are based on information in the Aercoustics Engineering Limited pits and quarries noise emission database.

Source ID	Source Description	Sound Power Level (dBA)	Effective Source Height (m)
S1	Processing Plant	123	3
S2	Shipping Loader	107	2.5
S3	Drill	112	1.5
S4	Shipping Truck	103	1.5
S5	Extraction Loader	107	2.5
S6	Quarry Truck	112	2.5

Table 5: Summary of Stationary Source Sound Power Levels

From this information, the source to receptor geometry can be established in order to facilitate noise level calculations and design any mitigation measures such as shielding berms and stockpiles.

The noise impact prediction calculations were performed using the DataKustik CadnaA environmental noise prediction software. The calculations are based on established prediction methods; ISO 9613-2: A Standard for Outdoor Noise Propagation standard. The noise impact predictions assumed downwind propagation conditions as defined by the standard.

Table 6 shows a summary of impacts that are predicted to occur with the implementation of recommendations given in Section 4 of this report.

	- , -	Trealeced III												
			Worst Case Impact From Source											
1		Processing	Shipping	Shipping	Extraction	Rock								
Receptor ID	Time Period	Plant (dBA)	Loader (dBA)	Truck (dBA)	Loader (dBA)	Trucks (dBA)	Drill (dBA)	Overall (dBA)	Limit (dBA)					
		<u> </u>	<u> </u>		. ,									
R1	Day	43	33	25	34	33	34	45	50					
	Night	N/A	33	25	N/A	N/A	N/A	34	45					
R2	Day	46	31	22	32	31	32	47	51					
112	Night	N/A	31	22	N/A	N/A	N/A	31	45					
R3	Day	36	20	26	39	39	40	43	45					
н <u>э</u>	Night	N/A	20	26	N/A	N/A	N/A	27	40					
R4	Day	35	19	22	35	35	36	40	45					
K4	Night	N/A	19	22	N/A	N/A	N/A	24	40					
R5	Day	34	17	20	36	36	35	40	45					
R5	Night	N/A	17	20	N/A	N/A	N/A	22	40					
R6	Day	39	15	13	28	30	30	40	45					
	Night	N/A	15	13	N/A	N/A	N/A	16	40					
R7	Day	39	24	14	29	30	30	40	45					
	Night	N/A	24	14	N/A	N/A	N/A	24	40					
R8	Day	39	24	15	30	30	31	41	45					

Table 6: Summary of Predicted Impacts

aercoustics

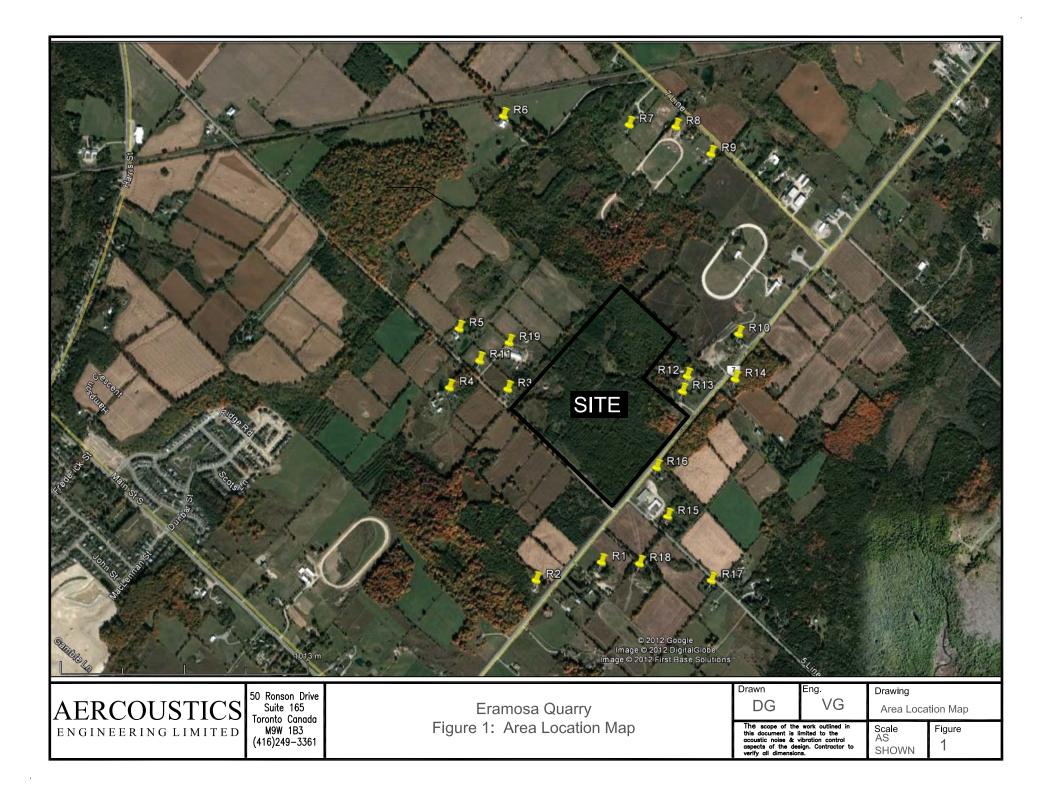
		Worst Case Impact From Source									
Receptor	Time	Processing Plant	Shipping Loader	Shipping Truck	Extraction Loader	Rock Trucks	Drill	Overall	Limit		
ID	Period	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)		
	Night	N/A	24	15	N/A	N/A	N/A	24	40		
R9	Day	40	25	16	31	31	32	41	45		
	Night	N/A	25	16	N/A	N/A	N/A	25	40		
R10	Day	46	31	20	36	36	38	48	53		
	Night	N/A	31	20	N/A	N/A	N/A	31	45		
R11	Day	35	19	23	37	37	37	41	45		
	Night	N/A	19	23	N/A	N/A	N/A	24	40		
R12	Day	46	31	22	36	37	41	48	50		
	Night	N/A	31	22	N/A	N/A	N/A	32	45		
R13	Day	43	29	18	37	40	45	48	50		
KT2	Night	N/A	29	18	N/A	N/A	N/A	30	45		
R14	Day	47	31	19	35	36	37	48	53		
	Night	N/A	31	19	N/A	N/A	N/A	31	45		
	Day	42	29	24	37	35	37	44	50		
R15	Night	N/A	29	24	N/A	N/A	N/A	30	45		
D16	Day	46	38	25	38	34	38	48	57		
R16	Night	N/A	38	25	N/A	N/A	N/A	38	45		
D17	Day	37	25	19	31	31	32	40	45		
R17	Night	N/A	25	19	N/A	N/A	N/A	26	40		
D 40	Day	41	29	25	34	33	34	43	45		
R18	Night	N/A	29	25	N/A	N/A	N/A	30	40		
D10	Day	35	19	23	39	39	39	43	45		
R19	Night	N/A	19	23	N/A	N/A	N/A	24	40		

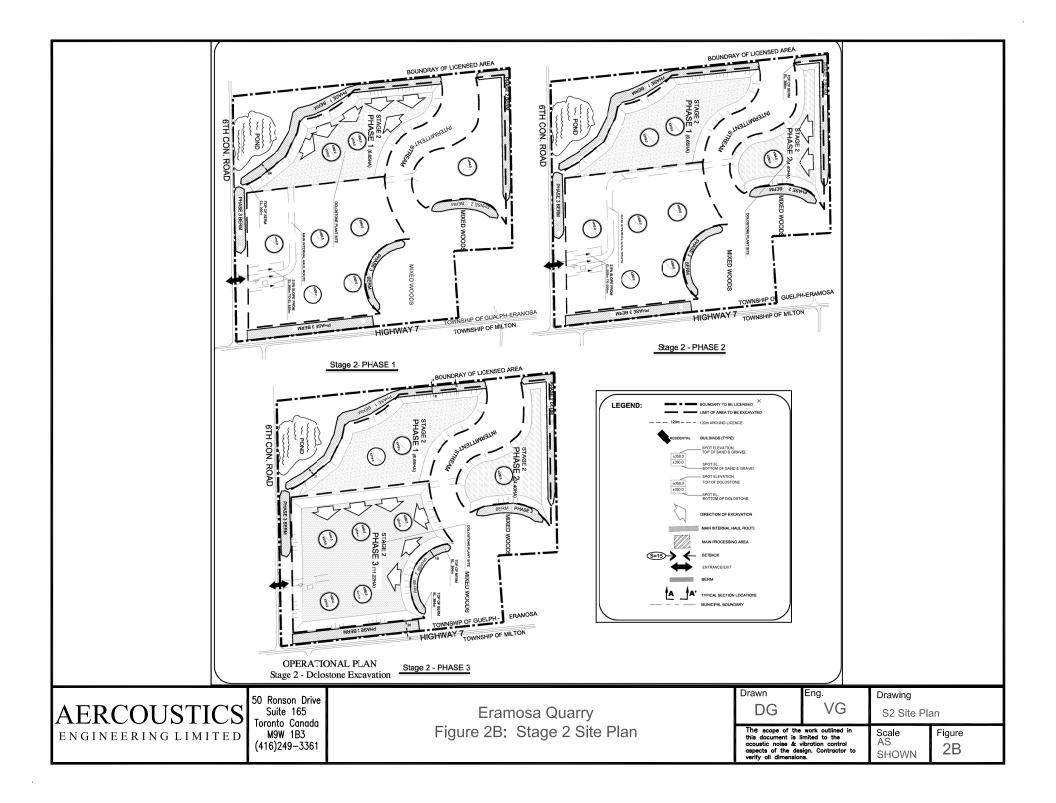
Note: The listed noise levels represent the maximum predicted impact for each individual source, and the overall. It should be noted that the overall may not equal the sum of the source maximums, as each maximum may not occur concurrently (i.e during different stages or phases).

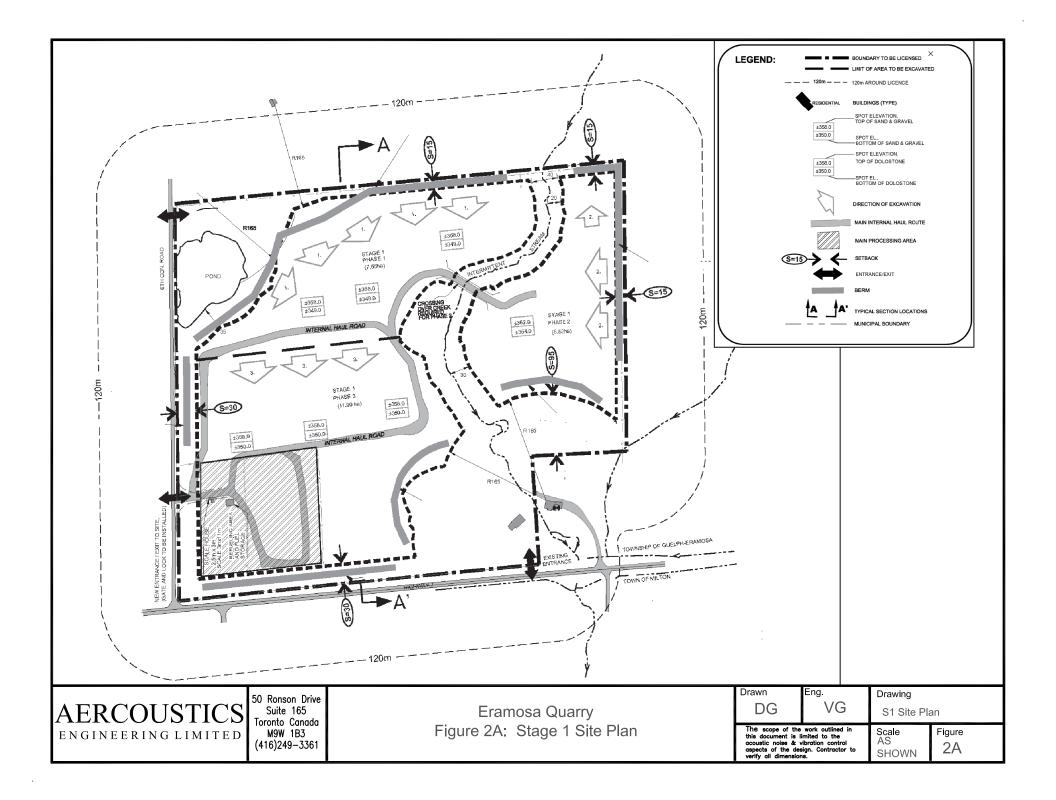
Sample calculations are given in Appendix C.

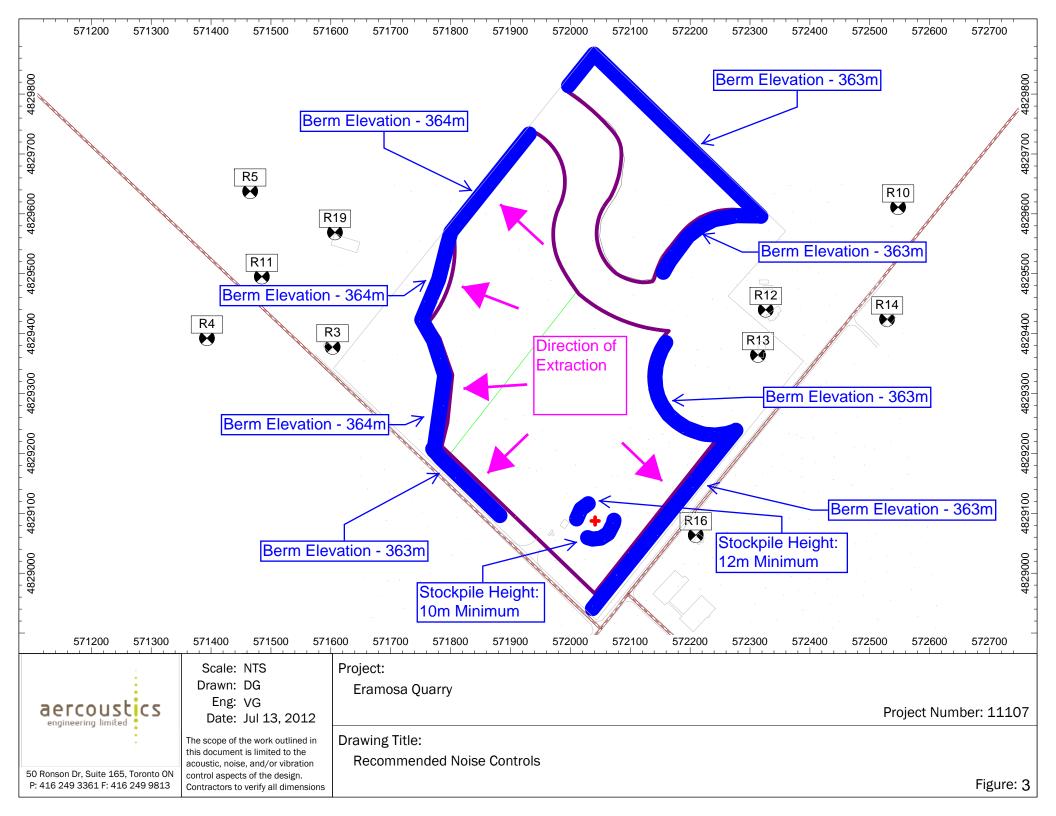
With the mitigation recommended the impacts at each sensitive point of reception are predicted to satisfy the applicable MOE limits.

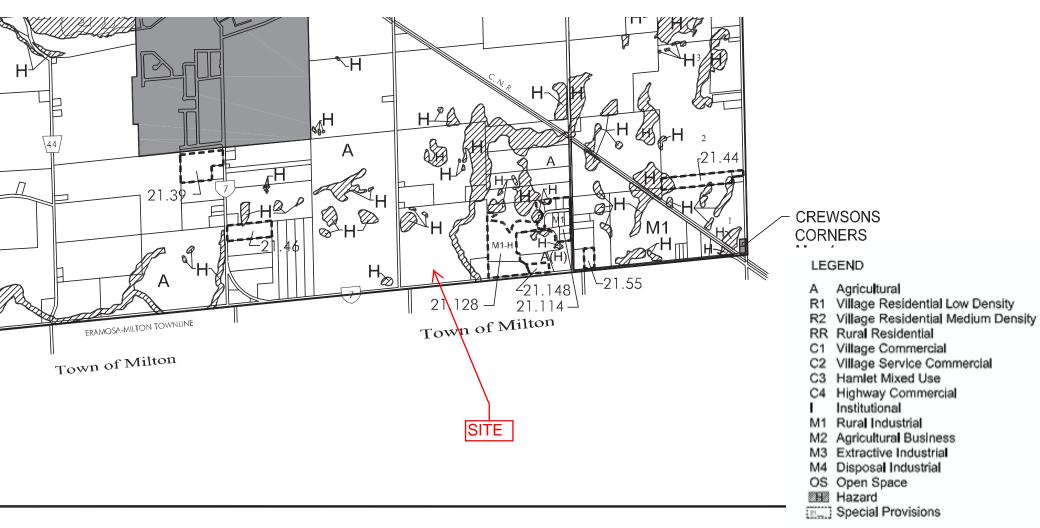
6 Conclusions


Aercoustics Engineering Limited has been retained by James Dick Construction Limited to carry out an environmental noise impact study for the subject quarry in the Township of Guelph-Eramosa, Ontario.


Receptor locations have been identified, and criteria have been established for each. Recommendations have been provided which include the implementation and enforcement of stockpile, earth berm, and direction of extraction requirements, pneumatic drill sound level limitations, and processing plant positioning requirements.


With the implementation of these recommendations, it has been demonstrated that the applicable criteria are satisfied.





Appendix A

Zoning Map

NOTE: THIS SCHEDULE TO BE READ IN CONJUNCTION WITH APPLICABLE SECTIONS OF THE BY-LAW.

CONSOLIDATED TO DECEMBER 31,2009

Appendix B

Sound Power Data

Name	63	125	250	500	1000	2000	4000	8000	A I	in
Processing Plant	114	117	121	119	119	116	110	100	123	126
Cat 980H	118	113	106	102	101	100	91	93	107	120
Drill	122	114	107	104	105	106	103	98	112	124
Rock Truck passby at 30km/hr	108	109	110	109	108	106	101	97	112	117
Highway Truck (25 kph)	106	100	98	100	100	96	88	78	103	111

Appendix C

Sample Calculations

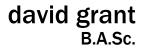
ISO 9613-2 Sample Calculation

Page 1 of 1

Receiver: R3

Project: Hidden Quarry Project Number: 11007

Total (dBA)
43
27


Receiver Name	Receiver ID	Х		Z	Ground
R3	R3	571603	4829378	360.8	359.3

Source Name	Source ID	Х	Y	Z	Ground	ReflOrd	LxT	LxN	L/A	Dist.	hm	Freq	Adiv	K0b	Agr	Abar	z	Aatm	Afol	Ahous	Cmet	CmetN	Dc	RL	LtotT	LtotN
Processing Plant	A01_S1	572041	4829087	352.0	349	0	123	-1	1.0	526	9.4	0	65.4	0	2.1	16.9	1.3	2.5	0.0	0.0	0.0	0.0	0.0	0.0	36	-88
Shipping Loader	A01_S2	572035	4829097	351.5	349	0	107	107	1.0	515	9.4	0	65.2	0	1.0	18.0	2.2	2.2	0.0	0.0	0.0	0.0	0.0	0.0	20	20
Drill	D09_S3	571897	4829455	351.5	350	0	112	-11	1.0	304	5.4	0	60.7	0	0.7	8.1	0.4	2.5	0.0	0.0	0.0	0.0	0.0	0.0	40	-82
Extraction Loader	D09_S2	571872	4829454	352.5	350	0	107	-1	1.0	280	5.3	0	59.9	0	1.9	6.6	0.4	1.4	0.0	0.0	0.0	0.0	0.0	0.0	37	-70
Shipping Truck	A01_S4	571986	4829098	350.5	349	0	94	94	71.8	475	6.6	0	64.5	0	0.3	5.0	0.3	2.1	0.0	0.0	0.0	0.0	0.0	0.0	22	22
Rock Trucks	D09_S5	571815	4829237	352.5	350	0	97	-16	40.4	255	5.8	0	59.1	0	5.6	10.3	1.4	1.6	0.0	0.0	0.0	0.0	0.0	0.0	20	-93
Rock Trucks	D09_S5	571837	4829303	352.5	350	0	101	-13	99.0	246	5.8	0	58.8	0	4.9	10.1	1.2	1.5	0.0	0.0	0.0	0.0	0.0	0.0	25	-88
Rock Trucks	D09_S5	571868	4829397	352.5	350	0	101	-13	99.0	265	5.7	0	59.5	0	2.5	8.5	0.6	1.6	0.0	0.0	0.0	0.0	0.0	0.0	28	-85
Rock Trucks	D09_S5	571926	4829108	351.5	349	0	101	-12	101.4	421	6.9	0	63.5	0	1.4	4.7	0.3	2.3	0.0	0.0	0.0	0.0	0.0	0.0	29	-84
Rock Trucks	D09_S5	571852	4829178	351.5	349	0	101	-12	101.4	320	6.3	0	61.1	0	2.7	8.3	0.7	1.9	0.0	0.0	0.0	0.0	0.0	0.0	27	-86
Shipping Truck	A01_S4	571944	4829045	361.5	360	0	88	88	16.2	477	4.8	0	64.6	0	3.8	1.8	0.0	2.1	0.0	0.0	0.0	0.0	0.0	0.0	15	15
Shipping Truck	A01_S4	571938	4829037	361.5	360	0	82	82	4.1	478	4.8	0	64.6	0	3.2	1.0	0.0	2.1	0.0	0.0	0.0	0.0	0.0	0.0	11	11
Shipping Truck	A01_S4	571933	4829031	361.5	360	0	86	86	11.7	479	3.4	0	64.6	0	2.5	0.0	0.0	2.1	0.0	0.0	0.0	0.0	0.0	0.0	17	17
Shipping Truck	A01_S4	571957	4829061	356.0	354.5	0	90	90	25.7	475	8.0	0	64.5	0	0.4	4.3	0.1	2.1	0.0	0.0	0.0	0.0	0.0	0.0	18	18
Shipping Truck	A01_S4	572015	4829120	350.5	349	0	88	88	18.0	486	6.5	0	64.7	0	0.2	5.0	0.3	2.2	0.0	0.0	0.0	0.0	0.0	0.0	16	16
Rock Trucks	D09_S5	572012	4829094	351.5	349	0	97	-16	47.0	498	9.6	0	65.0	0	0.7	23.3	9.3	2.6	0.0	0.0	0.0	0.0	0.0	0.0	6	-107
Rock Trucks	D09_S5	571978	4829090	351.5	349	0	97	-16	44.1	473	7.1	0	64.5	0	1.0	4.2	0.2	2.5	0.0	0.0	0.0	0.0	0.0	0.0	25	-88
Rock Trucks	D09_S5	571812	4829215	352.0	349.5	0	90	-23	8.1	265	5.8	0	59.5	0	5.6	10.4	1.5	1.6	0.0	0.0	0.0	0.0	0.0	0.0	13	-100

Appendix D

CVs

Acoustics Noise Vibration

credentials + experience

- performed work to support noise impact feasibility studies for several major **Mattamy Homes** housing developments while working at an acoustical consulting firm.
- joined Aercoustics in April 2008 as a noise and vibration consultant.
- involved in environmental compliance projects for several pits and quarries, including **Devon Pit, Hendrik's Quarry, and Flamboro Dufferin Aggregate Quarry.**
- responsible for several environmental compliance projects for a range of industrial/commercial facilities including Décor Precast, IBM Canada, HP Canada, Royal Bank of Canada, Canadian Tire, and Bell Canada.
- performed field sound transmission class (FSTC) testing for the **Waterloo Police** as part of a study to determine architectural noise control solutions that address speech-privacy concerns relating to inmate interrogation.
- involved in architectural noise control for a call center at an **HP Canada** datacenter facility.
- involved in several studies to document and provide recommendations for rail vibration measurements for the **Toronto Transit Commission**, as well as measuring and considering subway vibration and streetcar noise.
- performed supporting noise and vibration prediction modeling for several **Toronto Transit Commission** Environmental Assessments.
- jazz pianist, recording studio operator, and avid volleyball player.
- B.A.Sc., Electrical Engineering, Queen's University, 2006

50 Ronson Drive, Suite 165 Toronto, ON, Canada M9W 1B3 t 416 249 3361 f 416 249 3613

vince gambino B.A.Sc., P.Eng.

Acoustics Noise Vibration

credentials + experience

- first worked for Pratt & Whitney, testing and analyzing gas turbine engine components and aircraft structures for noise and vibration control.
- as a consulting engineer expanded expertise to environmental noise and vibration assessment, noise control design, finite element analysis, structural vibration and machinery dynamics.
- became one of four principals of Aercoustics Engineering Limited in 1992.
- notable projects include one of the world's first outdoor Active Noise Cancellation systems for the TransAlta cogeneration facility near the Ottawa Health Sciences Centre landed an Award of Excellence from the Association of Consulting Engineers of Canada; noise assessment and noise control review for the Millbank ABB GT11N Combustion Turbine Generating Station for New Brunswick Power; noise assessment for conversion of the Rolls Royce RB211 gas turbine to the WR21 marine power plant for Westinghouse; sound measurement program for the Rolls Royce RB211 on behalf of Cooper-Rolls Royce for TransCanada PipeLines; specialized loudspeaker transducers for Nortel Networks in media applications, they created the aural impression of a full soundstage for listeners; acoustics and noise control for Toronto's Filmport Studio complex; and a field study of wind machine noise in the Niagara wine region.
- has appeared as an **expert witness** on numerous occasions before the Ontario Energy Board (OEB) and Ontario Municipal Board (OMB) and various Environmental Assessment Review Panels, and court cases.
- designs and manufactures loudspeaker systems for specialized acoustic applications ranging from active noise cancellation to sound reinforcement systems

 has made extensive use of the National Research Council of Canada's computerized anechoic room facilities to optimize enclosure and filter designs.
- member of the Canadian Acoustical Association, American Society of Mechanical Engineers, Acoustical Society of America and Audio Engineering Society.
- B.A.Sc. (Mechanical Engineering), University of Toronto, 1984.

Acoustics Noise Vibration

24 May 2013

James Dick Construction

P.O. Box 470 Bolton, Ontario L7E 5T4

Attn: Greg Sweetnam

Re: Response to Peer Review from Novus Environmental Inc. for Proposed Hidden Quarry in Rockwood, Ontario, dated April 8, 2013.

The comments in this letter are in response to the peer review of Mr. Scott Penton, of Novus Environmental Inc, dated April 8, 2013, regarding Aercoustics' Noise Impact Study¹.

Our responses to the comments raised by Novus are presented below. A summarized version of our interpretation of the Novus comments is presented in italics followed by our responses:

1. Receptor Height.

The AEL report notes that a receptor height of 1.5m was used in the assessment. This is inconsistent with both MOE NPC-205 and NPC-232 noise guidelines

Aercoustics' assessment was indeed conducted at a 1.5m receptor height for daytime and night-time operations at all receptors which have only one storey. For two storey receptors, the day-time assessment was also performed at a 1.5m receptor height.

Although Aercoustics disagrees with Novus' interpretation of the MOE guidelines with respect to daytime receptor heights, Aercoustics has verified that impacts from daytime quarry operations at a 4.5m receptor height for two-storey dwellings does satisfy the established daytime sound level limit criteria, with the implementation of the acoustic controls as recommended in our Noise Impact Study¹.

Night time operations were assessed at a 4.5m receptor height as part of our report for residences which have a 2nd storey, however a clerical oversight resulted in 1.5m night time sound levels being reported for *all* receptors. This has been addressed in an updated report.

¹ Aercoustics report entitled "[...] Noise Impact Study," dated November 19, 2012

Page 2 of 3

The following table summarizes the above:

			November 15th, 2012 Report	Updated April 25th, 2012 Report
Quarry Operations	Receptor Construction	Receptor Height Basis for Assessment	Receptor Height Basis for Reported Levels	Receptor Height Basis for Reported Levels
Dautimo	One Storey	1.5m	1.5m	1.5m
Daytime	Two Storey	1.5m*	1.5m	1.5m
Night-time	One Storey	1.5m	1.5m	1.5m
	Two Storey	4.5m	1.5m	4.5m

*As noted earlier, in response to Novus' comments Aercoustics has verified that predicted impacts at a 4.5m receptor height satisfy the established day-time sound level criteria.

2. Construction Activity

The AEL report does not address Guelph/Eramosa Noise Bylaw 5001/05

Aercoustics agrees with Novus' comments and has updated its report accordingly.

3. Noise Source Emission Rates

It is uncertain if a tonal penalty has been applied to rock truck drilling noise.

To clarify, our report recommended a quiet rock drill satisfying a maximum sound power level of 112dBA. This can be accomplished either using a non-tonal rock drill with a maximum sound power of 112dBA, or a tonal rock drill with a maximum sound power equal to 107dBA.

4. Noise Source Emission Rates

The report does not indicate which phase was being assessed (or if the results are worst-case for all phases).

As noted in Table 6 of AEL's report, worst case impacts for each source are provided. The assessment process used is clarified below:

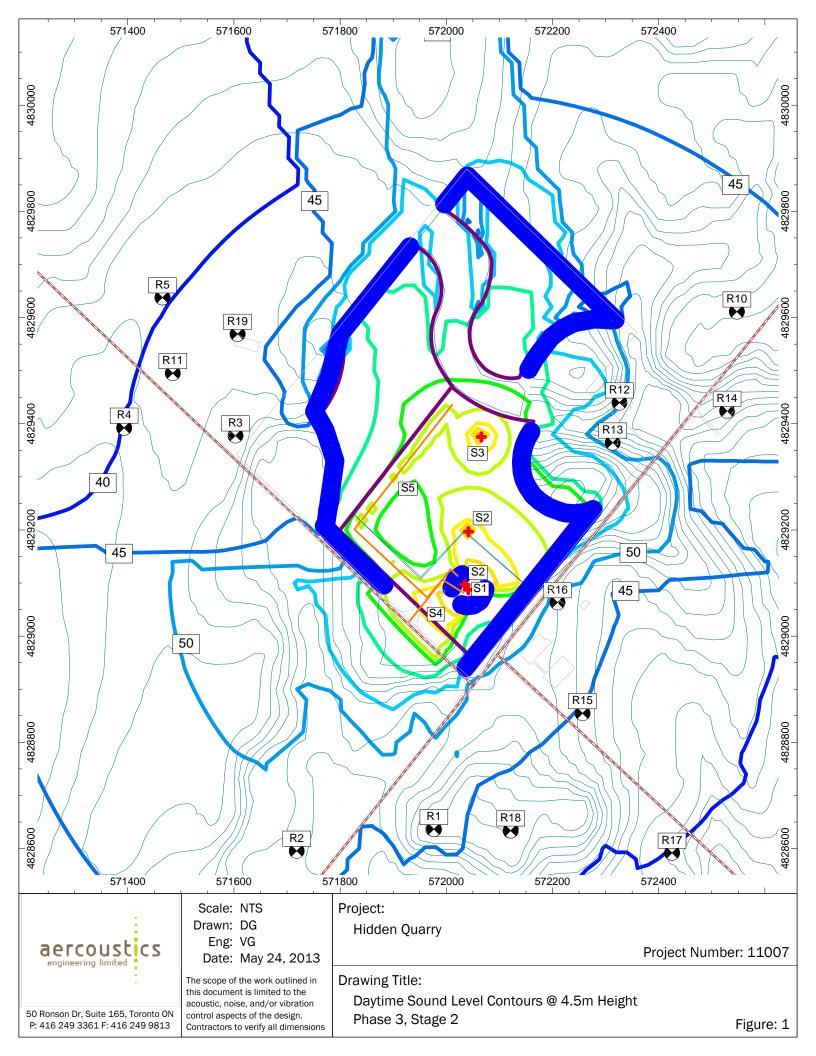
a) For each phase, noise sources which move through the excavation process are assessed at positions within that extraction phase which provide generate worst-case levels at receptors.

b) The worst-case levels obtained for each noise source from a) in each phase are compared, and the highest (i.e worst-case) are reported in table 6.

c) The same process as in b) is performed for overall levels and for sources which do not move across phases.

The report does not indicate where source equipment is being located within the quarry for noise modelling purposes. A contour map is required to confirm that compliance is achieved at all points at ground level within 30m of dwellings.

In its updated report, Aercoustics has included contour maps at 1.5m receptor height generated within CadnaA which also indicate source positions in its updated report in order to confirm that compliance is achieved within 30m of dwellings at ground level.


Aercoustics has attached sample daytime contours to this letter, generated at 4.5m, to validate the claims made in item 1 above.

Thank you for considering the responses in this letter. Please feel free to contact us if there are any questions or if further discussion is required.

David Grant, B.A.Sc., P.Eng.

Vince Gambino, P.Eng.

Noise Impact Study

project number: 11007

Acoustics Noise Vibration

Hidden Quarry

Rockwood Ontario

Prepared for:

James Dick Construction Limited

P.O Box 470 Bolton Ontario

Prepared by:

David Grant, B.A.Sc.

Unice of HUN

Vince Gambino, P.Eng.

Original Report 19 November, 2012 Updated 24 May 2013

50 Ronson Drive, Suite 165 Toronto, ON, Canada M9W 1B3 t 416 249 3361 f 416 249 3613

Table of Contents

1	Introduction	3
2	Background Information	3
3	Criteria and Guidelines	4
4	Recommendations	6
5	Noise Level Predictions	7
6	Conclusions	9

List of Figures

Figure 1: Area Location Map Figure 2A: Stage 1 Site Plan Figure 2B: Stage 2 Site Plan Figure 3: Recommended Mitigation

List of Tables

Table 1: Summary of Receptor Classes Table 2: Daytime Performance Limit Summary for Class 2 Receptors Table 3: Summary of Sound Level Performance Limits for All Receptors Table 4: Recommended Stockpile Height and Position Table 5: Summary of Stationary Source Sound Power Levels Table 6: Summary of Predicted Impacts

List of Appendices

Appendix A: Zoning Map Appendix B: Sound Power Data Appendix C: Sample Cadnaa Calculations Appendix D: CVs

1 Introduction

Aercoustics Engineering Limited has been retained by James Dick Construction Limited to carry out an environmental noise impact study for the subject quarry in the Township of Guelph-Eramosa, Ontario.

The purpose of this study is to assess the noise impact of the proposed quarry on the neighbouring residences. It has been prepared in accordance with the Aggregate Resources Act requirement for noise assessment. An area location map is given in Figure 1 which illustrates the designated calculation locations for processing noise (i.e. R1 through R19). An operational plan is shown in Figure 2A and 2B which identifies the extraction boundaries, phasing, equipment locations, and proposed direction of extraction.

2 Background Information

The background information used in evaluating the noise impact of this quarry is taken from the Aercoustics Engineering Limited database which comprises information obtained from acoustic performance measurement surveys conducted for numerous processing plants, pits, and quarries throughout Ontario. The proposed equipment type and operation is similar to a number of other sites. In order to assess the noise and vibration impact of the proposed quarry, it was necessary to conduct site and terrain specific noise modelling of work patterns, phasing and proposed equipment operation. Operation of peak period activity under both start-up conditions and operation at the extraction limits were modelled at the designated calculation locations identified in this study.

Site-specific information pertaining to this proposed quarry is as follows:

- 1. The proposed hours of full operation are normally:
 - 0600-1800 hours for shipping
 - 0700-1900 for drilling, processing, and extraction
- 2. The quarry extraction stages will be phased as shown in Figure 2A and 2B, with sand and gravel extraction occurring during Stage 1, and dolomite extraction occurring in Stage 2.
- 3. The operation will entail the use of the following equipment:
 - processing plant, crusher, screens, wash plant (700,000 tonnes per year)
 - delivery trucks
 - 1 extraction front end loader
 - 1 sales/shipping loader
 - 1 dragline (8 yard)

- 1 hydraulic drill
- Bulldozer/backhoe/scraper for site preparation and construction
- 3 rock trucks.
- 4. There are no fish spawning beds in the vicinity of the quarry.

3 Criteria and Guidelines

The noise impact methodology used in this study is based on sound and vibration impact guidelines stipulated by MOE in publications NPC-205/232/233, and the Aggregate Resources Act. MOE publication NPC-115 has also been referenced accordingly in order to address construction noise due to site preparation activities such as berm construction.

In addition, ISO standard 9613-2 on sound propagation outdoors has been used to further substantiate the environmental noise assessment presented in this study.

3.1 Ambient Noise Assessment

The existing noise environment comprises mostly natural sounds, as well as road traffic noise on Highway 7, 6th Line and 5th Line. The sound level criteria at points of reception are set by the guidelines in MOE publications NPC-205/232. According to these publications, the applicable sound level limit is the greater of the lowest 1-hour Leq measured at the critical receptor or the MOE defined limit for that class designation.

Nineteen sensitive points of reception have been identified surrounding the proposed Quarry. The locations and assigned ID#s for each receptor are labelled in the Figure 1 Area Location Map.

Receptors R1, R2, R10, and R12 to R16 are exposed to elevated levels of traffic noise from Highway 7. These receptors are considered to exist in a Class 2 area, as defined by the MOE, while all others are considered to exist in a Class 3 area. Receptor classes are summarized in the following table:

Table 1: Summary of Receptor Classes

Receptor	ID	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19
MOE Acoustical	2	•	•								•		•	•	•	•	•			
Class	3			•	•	•	•	•	•	•		•						•	•	•

Daytime performance limits have been established for some of these receptors based on STAMSON prediction calculations, using Ministry of Transportation (MTO) annual average daily traffic (AADT) volume data from 2007. The predicted daytime background noise level due to Highway 7 traffic at these receptors is given in Table 2. Sample calculations are provided in Appendix C.

aercoust engineering limited

Table 2: Daytime Performance Limit Summary for Class 2 Receptors

Receptor ID	Daytime (07:00-19:00) Performance Limit (dBA)
R2	51
R10	53
R14	53
R16	57

The applicable sound level performance limit for each receptor is summarized in Table 3:

Table 3: Su	,		e Limits for All Rece
	Daytime	Evening	Night time
Receptor	(07:00-19:00)	(19:00-23:00)	· · · · · · · · · · · · · · · · · · ·
ID	dBA	dBA	dBA
R1	50	45	45
R2	51	45	45
R3	45	40	40
R4	45	40	40
R5	45	40	40
R6	45	40	40
R7	45	40	40
R8	45	40	40
R9	45	40	40
R10	53	45	45
R11	45	40	45
R12	50	45	45
R13	50	45	45
R14	53	45	45
R15	50	45	45
R16	57	45	45
R17	45	40	40
R18	45	40	40
R19	45	40	40

Table 3: Summary of Sound Level Performance Limits for All Receptors

The receptor height used for calculation purposes is 1.5m above the receptor area grade for daytime points of reception, and for night-time points of reception on dwellings with only one storey. A 4.5m receptor height was used in the assessment for night-time quarry operations at two-storey dwellings.

3.2 Construction and Site Preparation/Rehabilitation Noise

Construction and site preparation/rehabilitation activities will be occurring during various stages of quarrying and will include activities such as site clearing and berm construction. These activities will occur as preparation for the various stages of the operation.

These activities are considered to be exempt from satisfying the MOE stationary noise source guidelines (i.e., 'non-stationary' noise source); namely publication NPC-205/232. All construction

Hidden Quarry	Page 6 of 13
Noise Impact Study	24 May 2013

equipment must meet the sound emission standards defined in MOE publication NPC-115 and Guelph/Eramosa Bylaw 5001/05. The relevant background information on non-stationary noise sources as well as publication NPC-115 is given in MOE Model Municipal Noise Control Bylaw, 1978 as well as the sound source exclusions defined in MOE publications NPC 205/232, 1995

4 **Recommendations**

The following recommendations are provided in order to meet the applicable criteria:

• 12m and 10m high stockpiles should be maintained in certain locations around the processing plant for each phase and stage. The stockpile peaks should be located no further than 30m from the processing plant, and should be located such that, in plan, they block line-of-sight between processing plant equipment and sensitive receptors, as described in the table below:

Stockpiles Positioned to Shield Receptor IDs	Minimum Stockpile Height (m)			
R1, R15, R16, R17, R18	10			
R3, R4, R5, R11, R19	12			

This configuration is illustrated on Figure 3.

- A quiet drill with a maximum sound power rating of 112dBA should be used. This corresponds to a maximum sound pressure level rating of 75dBA at 30 meters.
- Earth berms should be constructed to the elevations shown and located as shown on Figure 3.
- The recommended direction of extraction is indicated on Figure 3.
- The permanent processing plant area should be established at an elevation of 349m, and a haul route trench connecting the processing plant area to the Stage 1 Phase 1 extraction area should be excavated to the same 349m elevation.
- All construction equipment used in site preparation/construction must meet the sound emission standards defined in MOE publication NPC-115 and Guelph/Eramosa Bylaw 5001/05. The relevant background information on non-stationary noise sources as well as publication NPC-115 is given in MOE Model Municipal Noise Control Bylaw, 1978 as well as the sound source exclusions defined in MOE publications NPC 205/232, 1995, included in the attached.

5 Noise Level Predictions

The general operation of the proposed quarry is discussed in Section 2.0. Equipment sound power levels and source heights are listed in Table 5 and are based on information in the Aercoustics Engineering Limited pits and quarries noise emission database.

Source ID	Source Description	Sound Power Level (dBA)	Effective Source Height (m)
S1	Processing Plant	123	3
S2	Shipping Loader	107	2.5
S3	Drill	112	1.5
S4	Shipping Truck	103	1.5
S5	Extraction Loader	107	2.5
S6	Quarry Truck	112	2.5

Table 5: Summary of Stationary Source Sound Power Levels

From this information, the source to receptor geometry can be established in order to facilitate noise level calculations and design any mitigation measures such as shielding berms and stockpiles.

The noise impact prediction calculations were performed using the DataKustik CadnaA environmental noise prediction software. The calculations are based on established prediction methods; ISO 9613-2: A Standard for Outdoor Noise Propagation standard. The noise impact predictions assumed downwind propagation conditions as defined by the standard.

Table 6 shows a summary of impacts that are predicted to occur with the implementation of recommendations given in Section 4 of this report.

Table 6. Summary of Freedoted impacts									
		Worst Case Impact From Source							
		Processing	Shipping	Shipping	Extraction	Rock			
Receptor ID	Time Period	Plant (dBA)	Loader (dBA)	Truck (dBA)	Loader (dBA)	Trucks (dBA)	Drill (dBA)	Overall (dBA)	Limit (dBA)
R1	Day	43	33	25	34	33	34	45	50
	Night	N/A	34	26	N/A	N/A	N/A	34	45
R2	Day	46	31	22	32	31	32	47	51
	Night	N/A	31	22	N/A	N/A	N/A	31	45
R3	Day	36	20	26	39	39	40	43	45
	Night	N/A	20	26	N/A	N/A	N/A	27	40
R4	Day	35	19	22	35	35	36	40	45
	Night	N/A	19	22	N/A	N/A	N/A	24	40
R5	Day	34	17	20	36	36	35	40	45
	Night	N/A	17	20	N/A	N/A	N/A	22	40
R6	Day	39	15	13	28	30	30	40	45
	Night	N/A	15	13	N/A	N/A	N/A	16	40
R7	Day	39	24	14	29	30	30	40	45
	Night	N/A	24	16	N/A	N/A	N/A	24	40
R8	Day	39	24	15	30	30	31	41	45

Table 6: Summary of Predicted Impacts

aercoustics

				Worst Cas	e Impact Froi	m Source			
Receptor	Time	Processing Plant	Shipping Loader	Shipping Truck	Extraction Loader	Rock Trucks	Drill	Overall	Limit
ID	Period	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)
	Night	N/A	24	16	N/A	N/A	N/A	25	40
R9	Day	40	25	16	31	31	32	41	45
	Night	N/A	25	16	N/A	N/A	N/A	25	40
R10	Day	46	31	20	36	36	38	48	53
N10	Night	N/A	31	20	N/A	N/A	N/A	31	45
R11	Day	35	19	23	37	37	37	41	45
	Night	N/A	19	23	N/A	N/A	N/A	24	40
R12	Day	46	31	22	36	37	41	48	50
R12	Night	N/A	31	22	N/A	N/A	N/A	32	45
R13	Day	43	29	18	37	40	45	48	50
KT2	Night	N/A	29	18	N/A	N/A	N/A	30	45
R14	Day	47	31	19	35	36	37	48	53
	Night	N/A	31	19	N/A	N/A	N/A	31	45
D1E	Day	42	29	24	37	35	37	44	50
R15	Night	N/A	29	24	N/A	N/A	N/A	30	45
R16	Day	46	38	25	38	34	38	48	57
KT0	Night	N/A	38	25	N/A	N/A	N/A	38	45
R17	Day	37	25	19	31	31	32	40	45
	Night	N/A	25	20	N/A	N/A	N/A	27	40
D10	Day	41	29	25	34	33	34	43	45
R18	Night	N/A	29	26	N/A	N/A	N/A	31	40
D10	Day	35	19	23	39	39	39	43	45
R19	Night	N/A	19	23	N/A	N/A	N/A	24	40

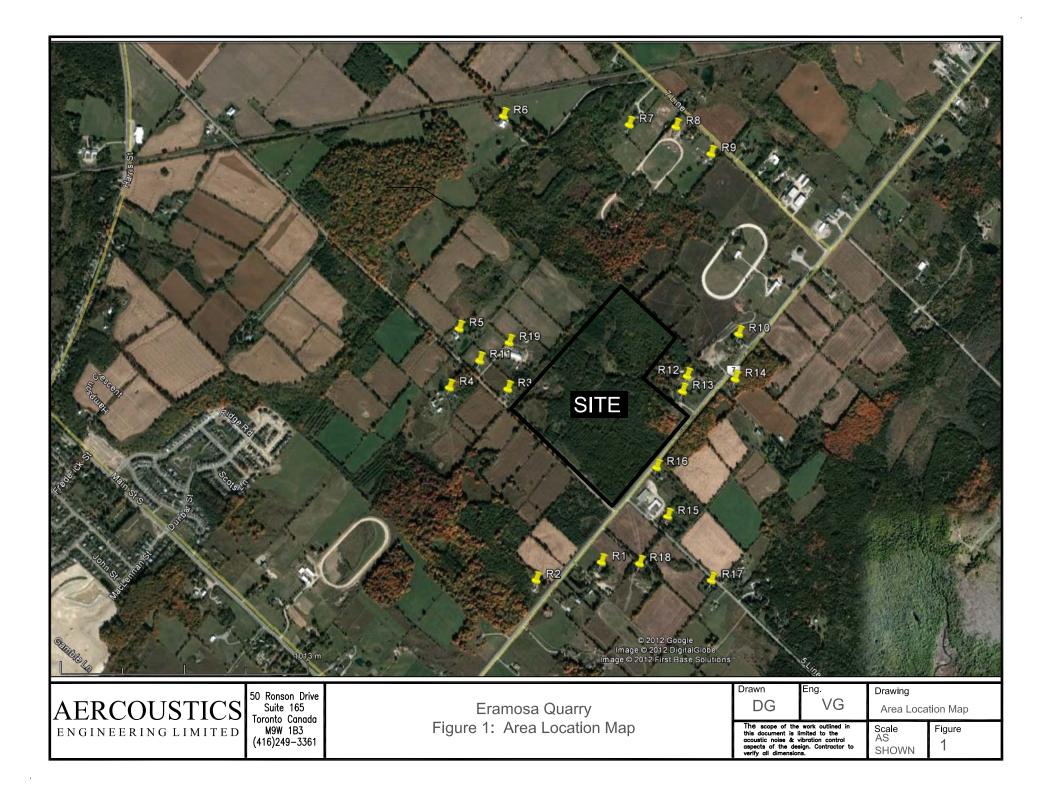
Note: The listed noise levels represent the maximum predicted impact for each individual source, and the overall. It should be noted that the overall may not equal the sum of the source maximums, as each maximum may not occur concurrently (i.e during different stages or phases).

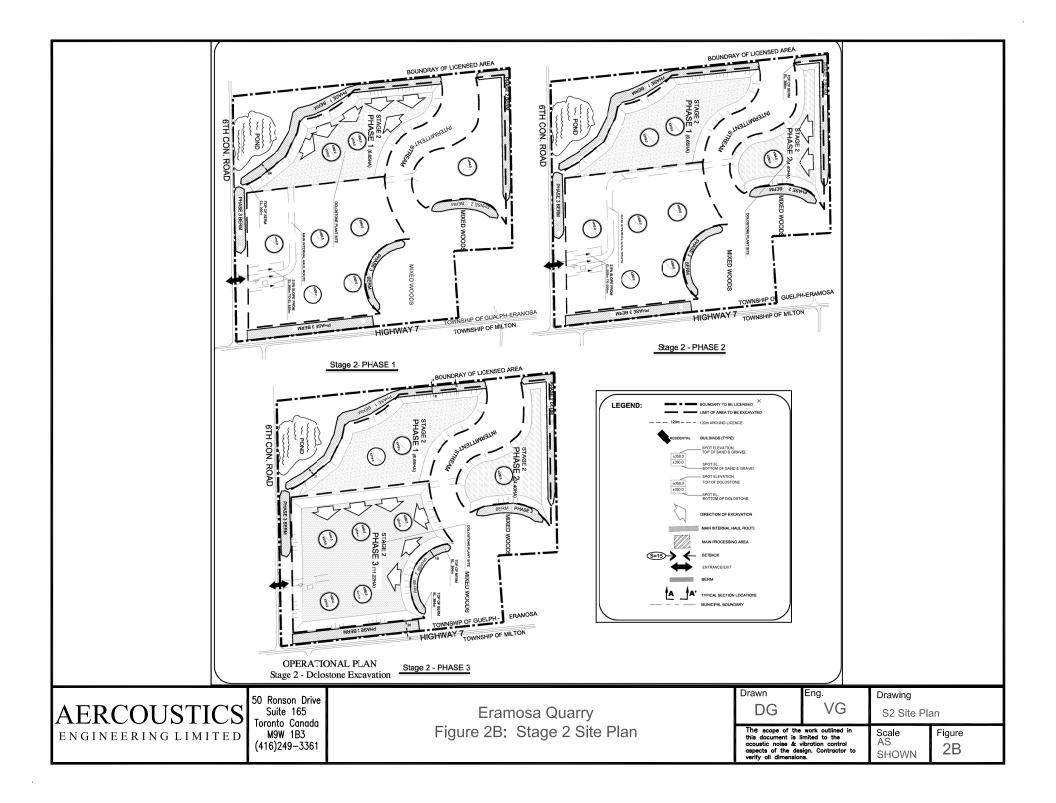
Sample calculations and sound level contours are given in Appendix C.

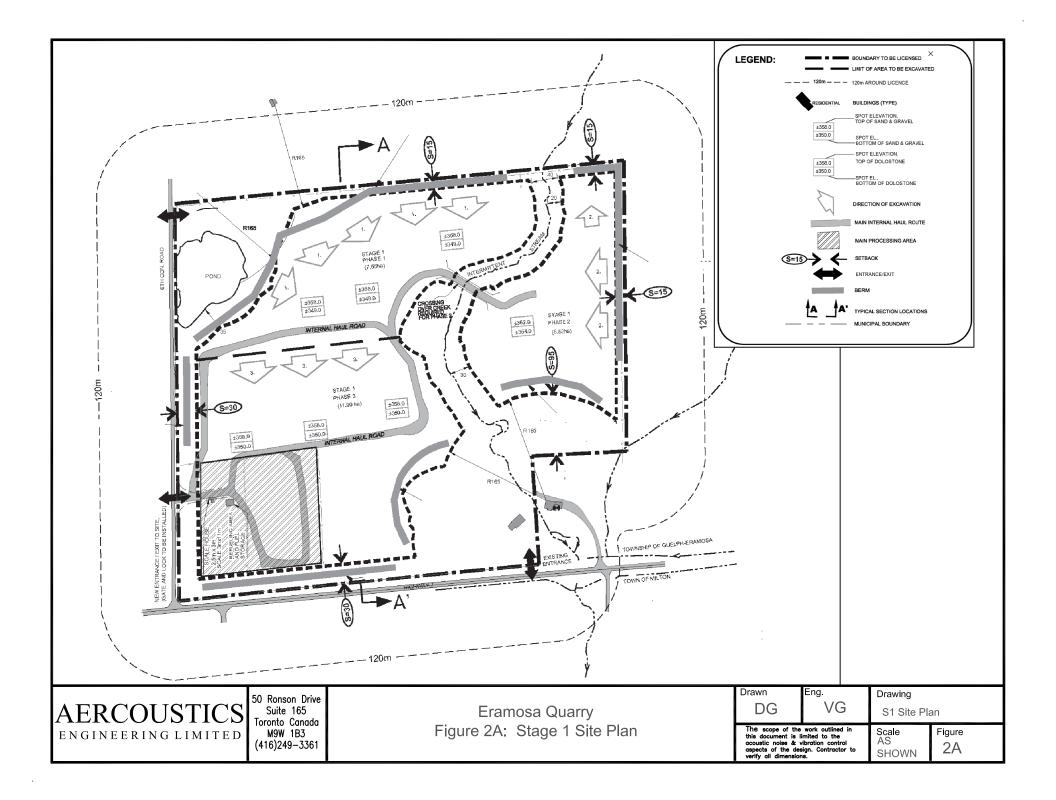
With the mitigation recommended the impacts at each sensitive point of reception are predicted to satisfy the applicable MOE limits.

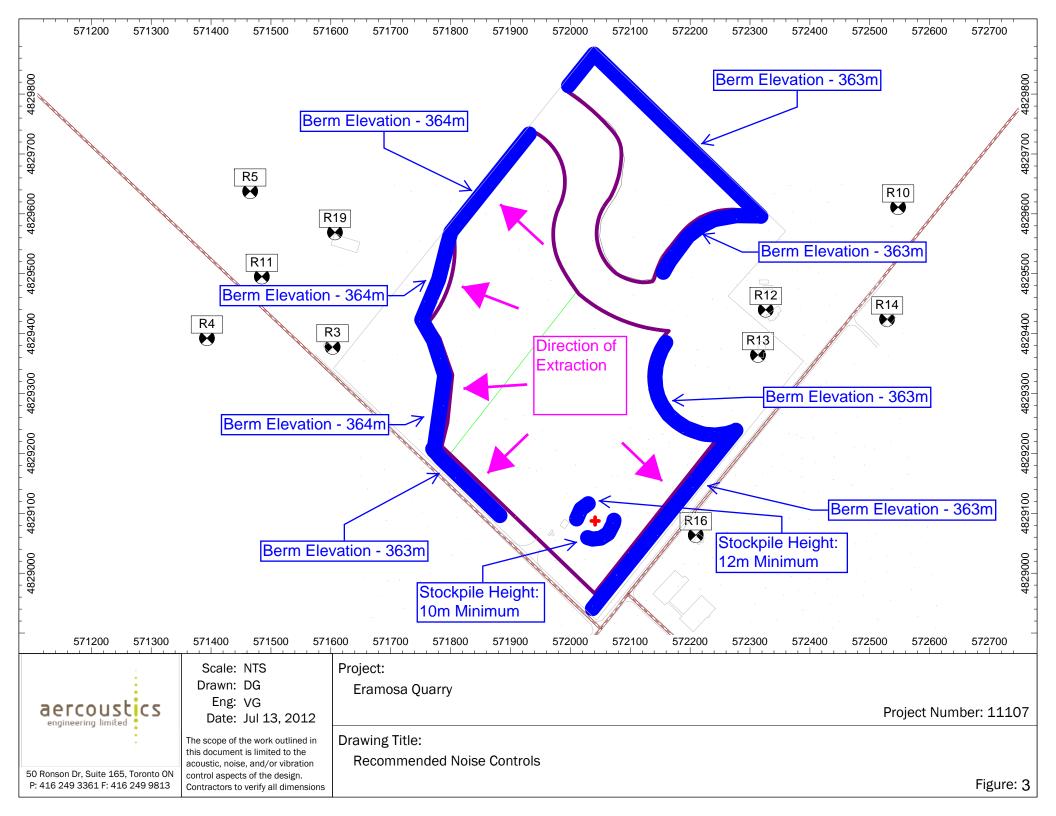
aercoustics.com

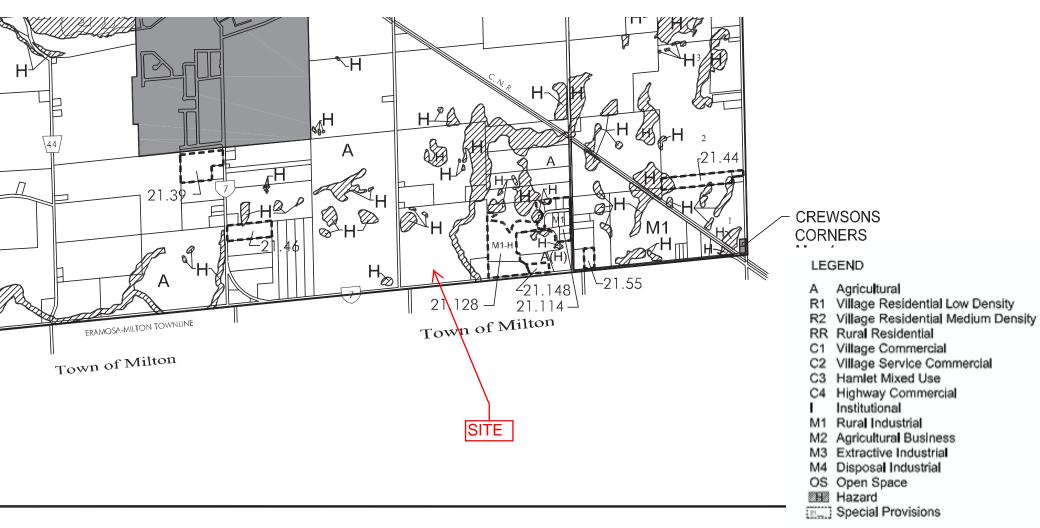
6 Conclusions


Aercoustics Engineering Limited has been retained by James Dick Construction Limited to carry out an environmental noise impact study for the subject quarry in the Township of Guelph-Eramosa, Ontario.


Receptor locations have been identified, and criteria have been established for each. Recommendations have been provided which include the implementation and enforcement of stockpile, earth berm, and direction of extraction requirements, pneumatic drill sound level limitations, and processing plant positioning requirements.


With the implementation of these recommendations, it has been demonstrated that the applicable criteria are satisfied.





Appendix A

Zoning Map

NOTE: THIS SCHEDULE TO BE READ IN CONJUNCTION WITH APPLICABLE SECTIONS OF THE BY-LAW.

CONSOLIDATED TO DECEMBER 31,2009

Appendix B

Sound Power Data

Name	63	125	250	500	1000	2000	4000	8000	A I	in
Processing Plant	114	117	121	119	119	116	110	100	123	126
Cat 980H	118	113	106	102	101	100	91	93	107	120
Drill	122	114	107	104	105	106	103	98	112	124
Rock Truck passby at 30km/hr	108	109	110	109	108	106	101	97	112	117
Highway Truck (25 kph)	106	100	98	100	100	96	88	78	103	111

Appendix C

Sample Calculations

Highway	Location Description - From	Location Description - To	Dist. (km)	AADT
6	MANITOULIN/SUDBURY DIST BDY	FOSTER DR-ESPANOLA S LTS-START OF NA ESPANOLA-HWY TRANSFER	20.6	3,450
6	FOSTER DR-ESPANOLA S LTS-START OF NA ESPANOLA-HWY TRANSFER	TUDHOPE ST-ESPANOLA-END OF NA	3.9	
6	TUDHOPE ST-ESPANOLA-END OF NA	HWY 17 -HWY END END OF HWY 6	2.7	8,450
7	HWY S 417&17 IC	HAZELDEAN RD -RMOC RD 36 (S)	2.5	14,700
7	HAZELDEAN RD -RMOC RD 36 (S)	DWYER HILL RD(N)-DWYER HILL RD(S)	7.6	16,600
7	DWYER HILL RD(N)-DWYER HILL RD(S)	ASHTON STATION RD(N)-ASHTON STATION RD(S)	3.8	14,700
7	ASHTON STATION RD(N)-ASHTON STATION RD(S)	MCNEELYAVE (N)	7.0	14,700
7	MCNEELYAVE (N)	HWY 15(N)-FRANKTOWN ROAD(S)	0.6	14,700
7	HWY 15(N)-FRANKTOWN ROAD(S)	MISSISSIPPI RD(S)LANARK RD 29-TOWNLINE RD (N)	3.8	6,950
7	MISSISSIPPI RD(S)LANARK RD 29-TOWNLINE RD (N)	LANARK RD 15 -FERGUSON FALLS RD(N)	9.0	8,400
7	LANARK RD 15 -FERGUSON FALLS RD(N)	A POINT 2.6 KM W OF LANARK RD 15	2.6	6,850
7	A POINT 2.6 KM W OF LANARK RD 15	LANARK RD 43/WILSON ST(S)-CANADIAN TIRE ENT(N	18.2	9,100
7	LANARK RD 43/WILSON ST(S)-CANADIAN TIRE ENT(N	LANARK RD 511(N)	0.7	18,100
7	LANARK RD 511(N)	ANGLICAN CHURCH RD EAST(N)	10.5	4,650
7	ANGLICAN CHURCH RD EAST(N)	LANARK RD 36 -BOLINGBROOKE RD(S)-ELPHIN RD(N)	12.2	4,650
7	LANARK RD 36 -BOLINGBROOKE RD(S)-ELPHIN RD(N)	LANARK/FRONTENAC CTYBDY	4.9	4,300
7	LANARK/FRONTENAC CTYBDY	ROAD 38(S)	7.7	4,300
7	ROAD 38(S)	ROAD 509 (N)	1.3	4,900
7	ROAD 509 (N)	A POINT 11.7 KM W OF MOUNTAIN GROVE R	26.4	3,650
7	A POINT 11.7 KM W OF MOUNTAIN GROVE R	FRONTENAC/LENNOX/ADDINGTON BDY	8.3	3,650
7	FRONTENAC/LENNOX/ADDINGTON BDY	HWY 41(N)-HASTINGS RD 41(S)	5.4	3,650
7	HWY 41(N)-HASTINGS RD 41(S)	LENNOX-ADDINGTON/HASTINGS BDY	12.0	4,850
7	LENNOX-ADDINGTON/HASTINGS BDY	HWY 37-ACTINOLITE	10.0	4,850
7	HWY 37-ACTINOLITE	PIGDEN RD (N)-ST LAWRENCE STREET E (S)	10.7	3,300
7	PIGDEN RD (N)-ST LAWRENCE STREET E (S)	HWY 62	2.8	2,950
7	HWY 62	MARMORA E LTS-MALONEYST-START OF NA MARMORA	16.3	3,500
7	MARMORA E LTS-MALONEYST-START OF NA MARMORA	CROWE RIVER BR (N)-DIST BDY-END OF NA	1.3	
7	CROWE RIVER BR (N)-DIST BDY-END OF NA	MARMORA W LTS -CROWE LAKE RD	0.5	4,750
7	MARMORA W LTS -CROWE LAKE RD	FIRST RD (S)-TERRACE RD (N)	4.5	4,750
7	FIRST RD (S)-TERRACE RD (N)	HAVELOCK E LT C8-9-MARYST-START OF NA HAVELOCK	11.3	4,750
7	HAVELOCK E LT C8-9-MARYST-START OF NA HAVELOCK	RAILWAYCROSSING -END OF NA	1.8	
7	RAILWAYCROSSING -END OF NA	NORWOOD E LTS	7.7	7,600
7	NORWOOD E LTS	PETERBOROUGH RD 45	1.4	7,600
7	PETERBOROUGH RD 45	NORWOOD W LTS	0.8	7,600
7	NORWOOD W LTS	PETERBOROUGH RD 38-WESTWOOD SDRD	9.0	8,050
7	PETERBOROUGH RD 38-WESTWOOD SDRD	OTONABEE TWP RD C 3-4	5.5	9,950
7	OTONABEE TWP RD C 3-4	HWY 28(N)CTYRD 34-HERITAGE LINE(S)	4.3	11,100
7	HWY 28(N)CTYRD 34-HERITAGE LINE(S)	DRUMMOND LINE	4.3	15,000
7	DRUMMOND LINE	OTONABEE TWP RD C10-11-BURNHAM LINE	1.2	15,000
7	OTONABEE TWP RD C10-11-BURNHAM LINE	PETERBOROUGH RD 30-TELEVISION RD(N)	1.8	21,200
7	PETERBOROUGH RD 30-TELEVISION RD(N)	ASHBURNHAM DR IC	1.4	15,000
7	ASHBURNHAM DR IC	BENSFORT RD IC	1.6	15,000
7	BENSFORT RD IC	HWY 7/115 -PARKWAY	3.3	26,000

Highway	Location Description - From	Location Description - To	Dist. (km)	AADT
7	HWY 7/115 -PARKWAY	CITYRD 11-AIRPORT RD	2.4	22,900
7	CITYRD 11-AIRPORT RD	HWY 7 &S JCT HWY 115 IC	4.0	22,900
7	HWY 7 &S JCT HWY 115 IC	STEWART LINE(W)P'BORO RD 15-N MONAGHAN PWY(E)	3.6	10,100
7	STEWART LINE(W)P'BORO RD 15-N MONAGHAN PWY(E)	PETERBORO RD 5-MAPLEGROVE RD	1.4	10,100
7	PETERBORO RD 5-MAPLEGROVE RD	P'BORO RD-1 LINDSEYRD(E)KAWARTHA LAKES RD26(7.4	11,500
7	P'BORO RD-1 LINDSEYRD(E)KAWARTHA LAKES RD26(OMEMEE E LTS L8-9 -START OF NA OMEMEE	8.7	9,750
7	OMEMEE E LTS L8-9 -START OF NA OMEMEE	OMEMEE W LTS C/L L4 -END OF NA	2.7	
7	OMEMEE W LTS C/L L4 -END OF NA	REABORO-PEACE AVE L 10-11	6.2	7,000
7	REABORO-PEACE AVE L 10-11	HWY 36	7.0	6,850
7	HWY 36	HWY 35 E JCT(S)KAWARTHA LAKES RD 15(N)	1.5	12,400
7	HWY 35 E JCT(S)KAWARTHA LAKES RD 15(N)	KAWARTHA LK RD4-LIT BRITIAN (S)ANGELINE ST(N	1.4	12,300
7	KAWARTHA LK RD4-LIT BRITIAN (S)ANGELINE ST(N	W JCT HWY 35	4.1	6,800
7	W JCT HWY 35	ELGIN ST(N)	8.7	8,950
7	ELGIN ST(N)	FINGERBOARD RD(S)KAWARTHA LK RD 46(N)	6.2	6,900
7	FINGERBOARD RD(S)KAWARTHA LK RD 46(N)	DUR RD2-SIMC ST(S)-KAWARTHA LK RD2-SIMC ST(N)	3.1	4,200
7	DUR RD2-SIMC ST(S)-KAWARTHA LK RD2-SIMC ST(N)	N JCT HWY 12	7.0	4,200
7	N JCT HWY 12	DURHAM RD 10-BROCK TWP RD C6 (E)	2.8	8,450
7	DURHAM RD 10-BROCK TWP RD C6 (E)	ALBERT ST (W)	1.2	5,900
7	ALBERT ST (W)	DURHAM RD 6-SAINTFIELD	8.0	6,400
7	DURHAM RD 6-SAINTFIELD	HWY 47	5.8	7,800
7	HWY 47	DURHAM RD 8-PORT PERRYRD	4.2	6,300
7	DURHAM RD 8-PORT PERRYRD	HWY 7A -MANCHESTER	2.9	7,700
7	HWY 7A -MANCHESTER	DURHAM RD 26-THICKSON RD	10.1	11,700
7	DURHAM RD 26-THICKSON RD	S JCT HWY 12-BROOKLIN-WHITBY	4.1	9,900
7	S JCT HWY 12-BROOKLIN-WHITBY	DURHAM RD 1-BROCK RD-PICKERING	12.6	16,000
7	DURHAM RD 1-BROCK RD-PICKERING	DURHAM/YORK REG BDY-NORTH JCT	6.9	10,200
7	DURHAM/YORK REG BDY-NORTH JCT	A PT 7.9 KM W OF DURHAM RD 1-BROCK RD-PICKERING	1.0	10,200
7	A PT 7.9 KM W OF DURHAM RD 1-BROCK RD-PICKERING	MARKHAM-HWY 48-MAIN ST -START OF NA MARKHAM-HWY TRANSFER	1.9	11,000
7	MARKHAM-HWY 48-MAIN ST -START OF NA MARKHAM-HWY TRANSFER	S JCT HWY 410-HEART LK RD-END OF NA OVERLAP HWY 410	48.4	
7	S JCT HWY 410-HEART LK RD-END OF NA OVERLAP HWY 410	N JCT HWY 410-CTYRD 10-BOVAIRD DR	3.1	
7	N JCT HWY 410-CTYRD 10-BOVAIRD DR	AT RAMP -START OF NA	0.4	58,800
7	AT RAMP -START OF NA	PEEL/HALTON BDY-HALTON HILLS LTS-END OF NA	10.7	
7	PEEL/HALTON BDY-HALTON HILLS LTS-END OF NA	HAL RD 19-WINSTON CHURCHILL BVD	0.5	14,200
7	HAL RD 19-WINSTON CHURCHILL BVD	HALL RD-START OF NA FORMER GEORGETOWN	1.6	17,500
7	HALL RD-START OF NA FORMER GEORGETOWN	HALTON RD 32-HALTON HILLS-END OF NA	5.0	
7	HALTON RD 32-HALTON HILLS-END OF NA	S JCT HALTON RD 3-TRAFALGAR RD	1.4	12,900
7	S JCT HALTON RD 3-TRAFALGAR RD	N JCT HALTON RD 3	3.5	18,500
7	N JCT HALTON RD 3	CHURCHILL RD-HALTON HILLS-START OF NA HALTON HILLS-ACTON	5.7	10,300
7	CHURCHILL RD-HALTON HILLS-START OF NA HALTON HILLS-ACTON	N JCT HWY 25-HALTON HILLS-END OF NA	2.0	
7	N JCT HWY 25-HALTON HILLS-END OF NA	HALTON HILL-MILTON TOWNLINE RD	3.1	7,750
7	HALTON HILL-MILTON TOWNLINE RD	A POINT 2.6 KM W OF 6TH LINE-MILTON	3.9	7,750
7	A POINT 2.6 KM W OF 6TH LINE-MILTON	WELLINGTON RD 50	2.2	7,750
7	WELLINGTON RD 50	WELLINGTON RD 27-GOWAN RD	1.1	7,750
7	WELLINGTON RD 27-GOWAN RD	WELLINGTON RD 29-ERAMOSA RD	4.1	9,000

Highway	Location Description - From	Location Description - To	Dist. (km)	AADT
7	WELLINGTON RD 29-ERAMOSA RD	GUELPH E LTS-START OF NA GUELPH	3.2	9,000
7	GUELPH E LTS-START OF NA GUELPH	W JCT HWY 24 & S JCT HWY 6-END OF NA OVERLAPS HWY 6	7.2	
7	W JCT HWY 24 & S JCT HWY 6-END OF NA OVERLAPS HWY 6	N JCT HWY 6-WOODLAWN RD-START OF NA GUELPH	3.7	
7	N JCT HWY 6-WOODLAWN RD-START OF NA GUELPH	IMPERIAL RD -GUELPH W LTS -END OF NA	2.9	
7	IMPERIAL RD -GUELPH W LTS -END OF NA	WELLINGTON/WATERLOO BDY	3.2	19,500
7	WELLINGTON/WATERLOO BDY	WOOLWICH ST E JCT -START OF NA KITCHENER/WATERLOO	5.8	21,300
7	WOOLWICH ST E JCT -START OF NA KITCHENER/WATERLOO	HWY 86 OP-CONESTOGA PKWY-END OF NA	5.7	
7	HWY 86 OP-CONESTOGA PKWY-END OF NA	OTTAWA ST IC-KITCHENER	1.9	103,800
7	OTTAWA ST IC-KITCHENER	E JCT HWY 8 OP IC-KING ST	1.3	90,600
7	E JCT HWY 8 OP IC-KING ST	COURTLAND AV IC OP	1.4	82,700
7	COURTLAND AV IC OP	HOMER WATSON BV-WATERLOO RD 28	1.3	79,000
7	HOMER WATSON BV-WATERLOO RD 28	FISCHER-HALLMAN RD -WATERLOO RD 58	2.4	51,300
7	FISCHER-HALLMAN RD -WATERLOO RD 58	A POINT 1.4 KM W OF WATERLOO RD 58	1.4	30,000
7	A POINT 1.4 KM W OF WATERLOO RD 58	TRUSSLER RD-WATERLOO RD 70	1.7	30,000
7	TRUSSLER RD-WATERLOO RD 70	WATERLOO RD 12 -PETERSBURG	3.8	23,300
7	WATERLOO RD 12 -PETERSBURG	WATERLOO RD 51 -NEW HAMBURG ROAD	5.1	21,500
7	WATERLOO RD 51 -NEW HAMBURG ROAD	WATERLOO RD 5	2.2	21,900
7	WATERLOO RD 5	E JCT WATERLOO RD 4	1.4	21,000
7	E JCT WATERLOO RD 4	W JCT WATERLOO RD 4-HAYSVILLE RD	0.9	22,500
7	W JCT WATERLOO RD 4-HAYSVILLE RD	WATERLOO RD 1-WAT/PERTH BDY	3.3	15,600
7	WATERLOO RD 1-WAT/PERTH BDY	PERTH ROAD 107-SHAKESPEARE	8.2	11,100
7	PERTH ROAD 107-SHAKESPEARE	A POINT 5.8 KM W OF PERTH ROAD 107	5.8	10,100
7	A POINT 5.8 KM W OF PERTH ROAD 107	STRATFORD E LTS L41-42-START OF NA STRATFORD	2.9	10,100
7	STRATFORD E LTS L41-42-START OF NA STRATFORD	PERTH LINE 29 -END OF NA	7.3	
7	PERTH LINE 29 -END OF NA	PERTH SOUTH LINE 20 (S)	4.2	9,200
7	PERTH SOUTH LINE 20 (S)	PERTH SOUTH LINE 9 (S)	4.8	9,200
7	PERTH SOUTH LINE 9 (S)	PERTH RD 118/OXFORD RD 119	3.0	6,500
7	PERTH RD 118/OXFORD RD 119	PERTH RD 123 (N)	6.4	5,800
7	PERTH RD 123 (N)	PERTH SOUTH LINE 2 (N)	6.0	5,350
7	PERTH SOUTH LINE 2 (N)	MIDDLESEX RD 50 (N)-PROSPECT HILL RD(N &S)	1.5	5,350
7	MIDDLESEX RD 50 (N)-PROSPECT HILL RD(N &S)	HWY 23	8.8	5,900
7	HWY 23	0.1 KM W OF HWY 4-END OF HWY END OF HWY 7	1.3	6,650
7A	W JCT HWY 115 IC	PETERBOROUGH/VICTORIA BDY	9.0	4,400
7A	PETERBOROUGH/VICTORIA BDY	S JCT HWY 35-COMMUTER PKG N	8.9	4,400
7A	S JCT HWY 35-COMMUTER PKG N	N JCT HWY 35	1.5	9,950
7A	N JCT HWY 35	BANCROFT -TORONTO MTO DIST BDY	6.4	4,950
7A	BANCROFT -TORONTO MTO DIST BDY	N JCT DURHAM RD 57 -CAESAREA RD	7.7	5,300
7A	N JCT DURHAM RD 57 -CAESAREA RD	CARTWRIGHT-SCUGOG TWP BDY	6.6	12,300
7A	CARTWRIGHT-SCUGOG TWP BDY	ISLAND RD	1.9	10,900
7A	ISLAND RD	PORT PERRYE LTS -WATER ST	1.9	18,100
7A	PORT PERRYE LTS -WATER ST	DURHAM RD 2-PORT PERRY-OSHAWA RD	0.5	19,600
7A	DURHAM RD 2-PORT PERRY-OSHAWA RD	QUEEN ST (E);BREWERS RETAILS (N)	1.2	12,500
7A	QUEEN ST (E);BREWERS RETAILS (N)	HWY S 7 &12-MANCHESTER -HWY END END OF HWY 7A	2.7	12,200

Hourly Road Noise Predictions based on ITE Traffic Distribution

Type of Traffic Distribution: Residential Area

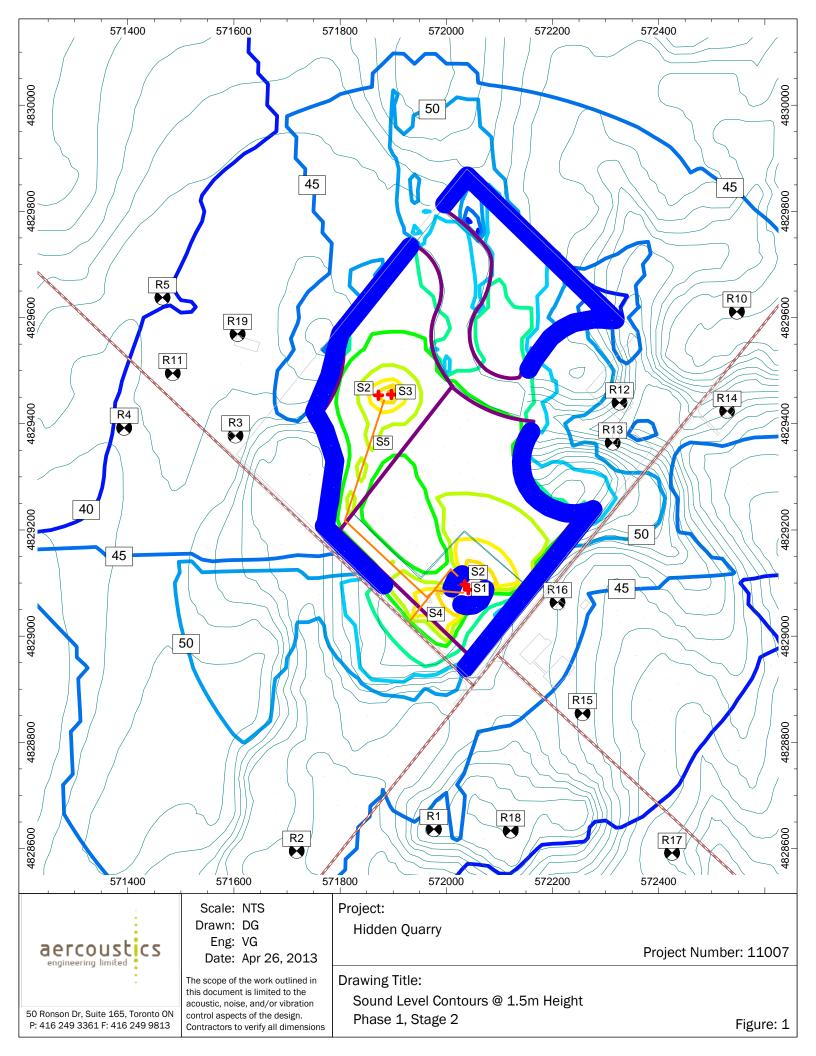
Pos	Roadway: H AADT: MT% HT% sted Speed Limit: Grade:	lighway 7750 3.5% 3.5% 80 0%	7 km/hr	Receptor: Rh: Distance: Angle 1: Angle 2:	R16 1.5 40 -90 90	m m degrees degrees
Hour Ending	% of AADT	Total	Cars	МТ	HT	Hourly Leq (dBA)
0:00	3.0%	233	216	8	8	57
1:00	2.4%	186	173	7	7	56
2:00	0.8%	62	58	2	2	51
3:00	0.3%	23	22	1	1	47
4:00	0.2%	16	14	1	1	45
5:00	0.2%	16	14	1	1	45
6:00	0.6%	47	43	2	2	50
7:00	2.7%	209	195	7	7	57
8:00	5.7%	442	411	15	15	60
9:00	6.9%	535	497	19	19	61
10:00	4.2%	326	303	11	11	58
11:00	4.1%	318	296	11	11	58
12:00	4.6%	357	332	12	12	59
13:00	5.3%	411	382	14	14	59
14:00	5.5%	426	396	15	15	60
15:00	5.2%	403	375	14	14	59
16:00	6.3%	488	454	17	17	60
17:00	8.5%	659	613	23	23	61
18:00	8.2%	636	591	22	22	61
19:00	6.8%	527	490	18	18	61
20:00	6.2%	481	447	17	17	60
21:00	4.7%	364	339	13	13	59
22:00	4.1%	318	296	11	11	58
23:00	3.5%	271	252	9	9	58

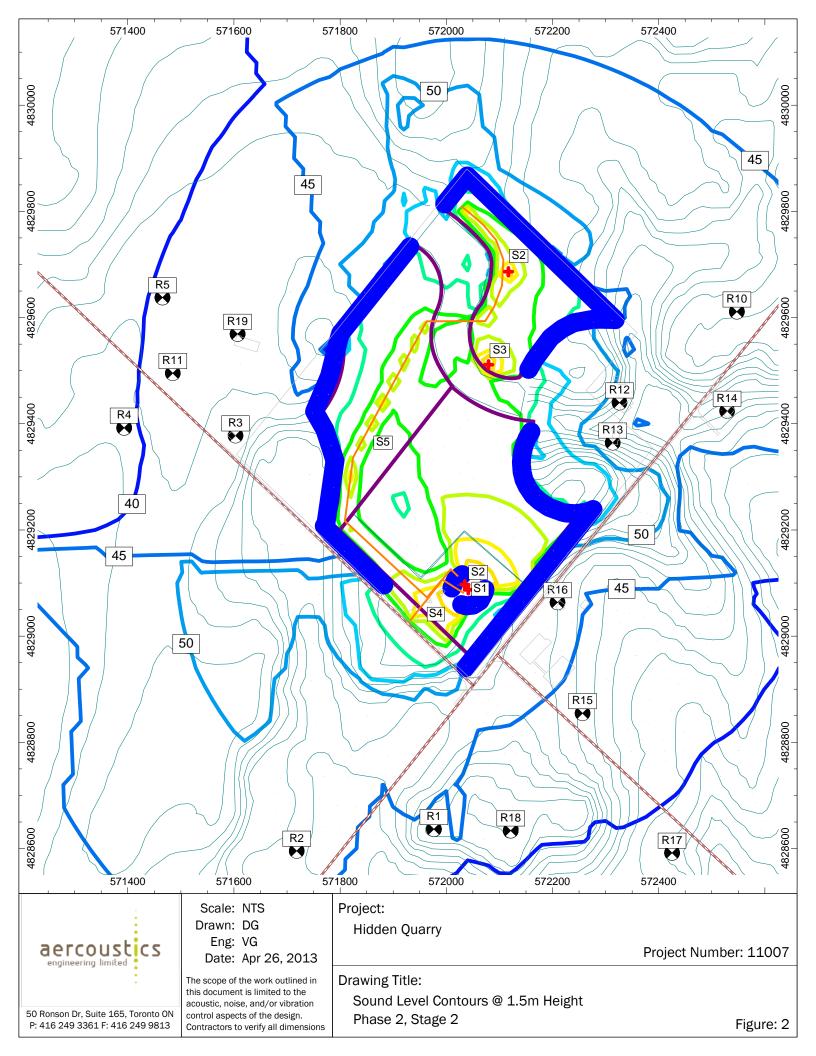
ISO 9613-2 Sample Calculation

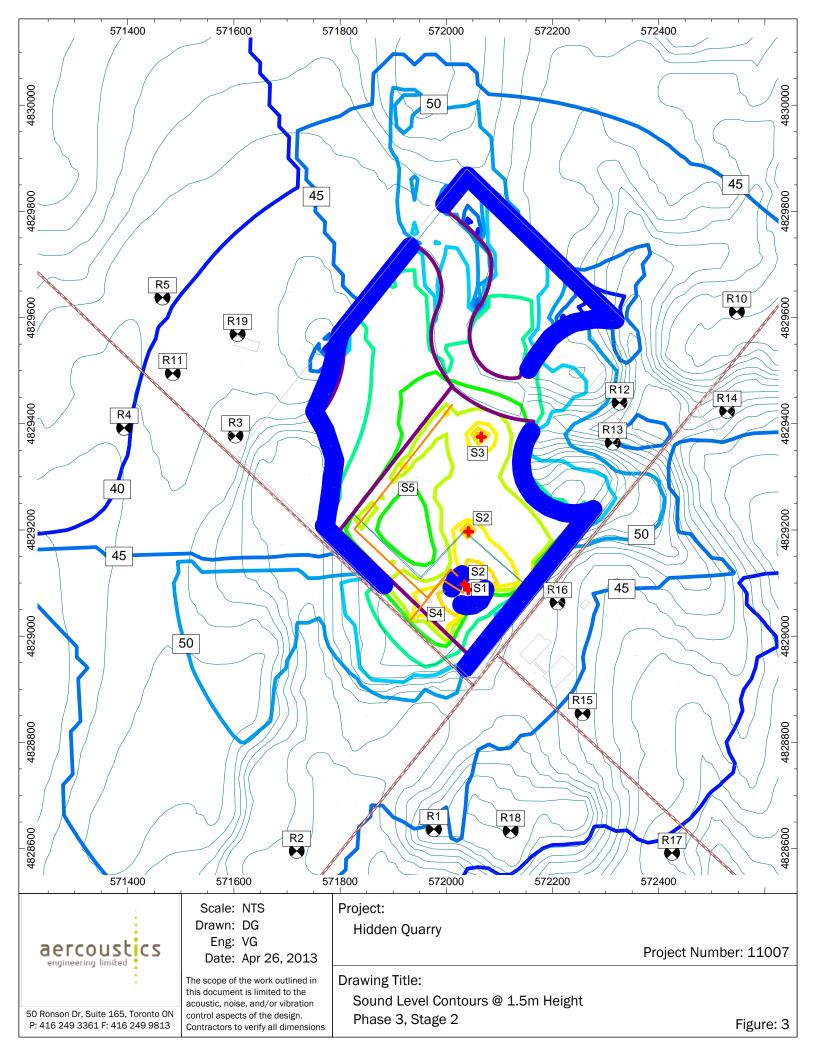
Page 1 of 1

Receiver: R3

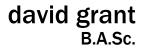
Project: Hidden Quarry Project Number: 11007


Time Period	Total (dBA)
Day	43


Receiver Name	Receiver ID	Х	Y	Z	Ground
R3	R3	571603	4829378	360.8	359.3


Source Name	Source ID	Х	Y	Z	Ground	ReflOrd	LxT	LxN	L/A	Dist.	hm	Freq	Adiv	K0b	Agr	Abar	z	Aatm	Afol	Ahous	Cmet	CmetN	Dc	RL	LtotT	LtotN
Processing Plant	A01_S1	572041	4829087	352.0	349	0	123	-1	1.0	526	9.4	0	65.4	0	2.1	16.9	1.3	2.5	0.0	0.0	0.0	0.0	0.0	0.0	36	-88
Shipping Loader	A01_S2	572035	4829097	351.5	349	0	107	107	1.0	515	9.4	0	65.2	0	1.0	18.0	2.2	2.2	0.0	0.0	0.0	0.0	0.0	0.0	20	20
Drill	D09_S3	571897	4829455	351.5	350	0	112	-11	1.0	304	5.4	0	60.7	0	0.7	8.1	0.4	2.5	0.0	0.0	0.0	0.0	0.0	0.0	40	-82
Extraction Loader	D09_S2	571872	4829454	352.5	350	0	107	-1	1.0	280	5.3	0	59.9	0	1.9	6.6	0.4	1.4	0.0	0.0	0.0	0.0	0.0	0.0	37	-70
Shipping Truck	A01_S4	571986	4829098	350.5	349	0	94	94	71.8	475	6.6	0	64.5	0	0.3	5.0	0.3	2.1	0.0	0.0	0.0	0.0	0.0	0.0	22	22
Rock Trucks	D09_S5	571815	4829237	352.5	350	0	97	-16	40.4	255	5.8	0	59.1	0	5.6	10.3	1.4	1.6	0.0	0.0	0.0	0.0	0.0	0.0	20	-93
Rock Trucks	D09_S5	571837	4829303	352.5	350	0	101	-13	99.0	246	5.8	0	58.8	0	4.9	10.1	1.2	1.5	0.0	0.0	0.0	0.0	0.0	0.0	25	-88
Rock Trucks	D09_S5	571868	4829397	352.5	350	0	101	-13	99.0	265	5.7	0	59.5	0	2.5	8.5	0.6	1.6	0.0	0.0	0.0	0.0	0.0	0.0	28	-85
Rock Trucks	D09_S5	571926	4829108	351.5	349	0	101	-12	101.4	421	6.9	0	63.5	0	1.4	4.7	0.3	2.3	0.0	0.0	0.0	0.0	0.0	0.0	29	-84
Rock Trucks	D09_S5	571852	4829178	351.5	349	0	101	-12	101.4	320	6.3	0	61.1	0	2.7	8.3	0.7	1.9	0.0	0.0	0.0	0.0	0.0	0.0	27	-86
Shipping Truck	A01_S4	571944	4829045	361.5	360	0	88	88	16.2	477	4.8	0	64.6	0	3.8	1.8	0.0	2.1	0.0	0.0	0.0	0.0	0.0	0.0	15	15
Shipping Truck	A01_S4	571938	4829037	361.5	360	0	82	82	4.1	478	4.8	0	64.6	0	3.2	1.0	0.0	2.1	0.0	0.0	0.0	0.0	0.0	0.0	11	11
Shipping Truck	A01_S4	571933	4829031	361.5	360	0	86	86	11.7	479	3.4	0	64.6	0	2.5	0.0	0.0	2.1	0.0	0.0	0.0	0.0	0.0	0.0	17	17
Shipping Truck	A01_S4	571957	4829061	356.0	354.5	0	90	90	25.7	475	8.0	0	64.5	0	0.4	4.3	0.1	2.1	0.0	0.0	0.0	0.0	0.0	0.0	18	18
Shipping Truck	A01_S4	572015	4829120	350.5	349	0	88	88	18.0	486	6.5	0	64.7	0	0.2	5.0	0.3	2.2	0.0	0.0	0.0	0.0	0.0	0.0	16	16
Rock Trucks	D09_S5	572012	4829094	351.5	349	0	97	-16	47.0	498	9.6	0	65.0	0	0.7	23.3	9.3	2.6	0.0	0.0	0.0	0.0	0.0	0.0	6	-107
Rock Trucks	D09_S5	571978	4829090	351.5	349	0	97	-16	44.1	473	7.1	0	64.5	0	1.0	4.2	0.2	2.5	0.0	0.0	0.0	0.0	0.0	0.0	25	-88
Rock Trucks	D09_S5	571812	4829215	352.0	349.5	0	90	-23	8.1	265	5.8	0	59.5	0	5.6	10.4	1.5	1.6	0.0	0.0	0.0	0.0	0.0	0.0	13	-100

aercoustics.com



Appendix D

CVs

Acoustics Noise Vibration

credentials + experience

- performed work to support noise impact feasibility studies for several major **Mattamy Homes** housing developments while working at an acoustical consulting firm.
- joined Aercoustics in April 2008 as a noise and vibration consultant.
- involved in environmental compliance projects for several pits and quarries, including **Devon Pit, Hendrik's Quarry, and Flamboro Dufferin Aggregate Quarry.**
- responsible for several environmental compliance projects for a range of industrial/commercial facilities including Décor Precast, IBM Canada, HP Canada, Royal Bank of Canada, Canadian Tire, and Bell Canada.
- performed field sound transmission class (FSTC) testing for the **Waterloo Police** as part of a study to determine architectural noise control solutions that address speech-privacy concerns relating to inmate interrogation.
- involved in architectural noise control for a call center at an **HP Canada** datacenter facility.
- involved in several studies to document and provide recommendations for rail vibration measurements for the **Toronto Transit Commission**, as well as measuring and considering subway vibration and streetcar noise.
- performed supporting noise and vibration prediction modeling for several **Toronto Transit Commission** Environmental Assessments.
- jazz pianist, recording studio operator, and avid volleyball player.
- B.A.Sc., Electrical Engineering, Queen's University, 2006

50 Ronson Drive, Suite 165 Toronto, ON, Canada M9W 1B3 t 416 249 3361 f 416 249 3613

vince gambino B.A.Sc., P.Eng.

Acoustics Noise Vibration

credentials + experience

- first worked for Pratt & Whitney, testing and analyzing gas turbine engine components and aircraft structures for noise and vibration control.
- as a consulting engineer expanded expertise to environmental noise and vibration assessment, noise control design, finite element analysis, structural vibration and machinery dynamics.
- became one of four principals of Aercoustics Engineering Limited in 1992.
- notable projects include one of the world's first outdoor Active Noise Cancellation systems for the TransAlta cogeneration facility near the Ottawa Health Sciences Centre landed an Award of Excellence from the Association of Consulting Engineers of Canada; noise assessment and noise control review for the Millbank ABB GT11N Combustion Turbine Generating Station for New Brunswick Power; noise assessment for conversion of the Rolls Royce RB211 gas turbine to the WR21 marine power plant for Westinghouse; sound measurement program for the Rolls Royce RB211 on behalf of Cooper-Rolls Royce for TransCanada PipeLines; specialized loudspeaker transducers for Nortel Networks in media applications, they created the aural impression of a full soundstage for listeners; acoustics and noise control for Toronto's Filmport Studio complex; and a field study of wind machine noise in the Niagara wine region.
- has appeared as an **expert witness** on numerous occasions before the Ontario Energy Board (OEB) and Ontario Municipal Board (OMB) and various Environmental Assessment Review Panels, and court cases.
- designs and manufactures loudspeaker systems for specialized acoustic applications ranging from active noise cancellation to sound reinforcement systems

 has made extensive use of the National Research Council of Canada's computerized anechoic room facilities to optimize enclosure and filter designs.
- member of the Canadian Acoustical Association, American Society of Mechanical Engineers, Acoustical Society of America and Audio Engineering Society.
- B.A.Sc. (Mechanical Engineering), University of Toronto, 1984.

Aercoustics Engineering Ltd. Tel: 416-249-3301 Fax 416-249-3613 50 Ronson Drive, Suite 165 Toronto, ON M9W 1B3

aercoustics.com

10 August 2015

James Dick Construction Limited 14442 REGIONAL ROAD 50 Address Line 2 Bolton, Ontario, Canada L7E 5T4

Attn: Greg Sweetnam

Re: Proposed Hidden Quarry Noise Impact Study Report Addendum #1

Introduction 1

This letter serves as addendum #1 to the Noise Impact Study¹ for the proposed Hidden Quarry development to address the following:

1. <u>Revised guarry floor elevation height for high spring water elevation level</u> The high spring water level was measured to range from 346 masl to 354 masl across the site as shown in Figure 1. In the vicinity of the process plant location the high spring water level elevation is around 350 masl.

A revision to the noise model was required to accommodate the quarry floor remaining above the high water table, specifically in the processing plant area where the guarry floor has increased from 349 masl to 351 masl. The noise model used conservative quarry floor levels of 355 masl in phases 1 and 3 and 354 masl in phase 2.

- 2. Changes to on-site truck haul routes for phases On-site truck haul routes for Phases 1, 2 and 3 have been updated based on the latest site plan.
- 3. Updated location of processing plant and stockpile locations A minor reposition of the processing plant and stockpiles was implemented in the model to reflect the location shown on the latest site plan.

¹ Aercoustics report entitled "Hidden Quarry Noise Impact Study", dated November 19, 2012, updated May 24, 2013.

2 Changes In Noise Controls

To accommodate the above listed changes, the following general revisions to the noise controls were made:

- 1) Quarry floor in the vicinity of the processing plant was changed from 349 masl to 351 masl.
- 2) The east portion of the 12 m stockpile shown on the site plan adjacent to the processing plant was extended to provide screening for R7.
- Removal of recommendation for direction of extraction. There is no requirement to use the working face as a noise control measure. Perimeter berming is will provide sufficient screening.

3 Recommended Noise Controls

With the above listed changes implemented, the following list presents the recommended noise control measures:

 12m and 10m high stockpiles should be maintained in certain locations around the processing plant for each phase and stage. The stockpile peaks should be located no further than 30m from the processing plant, and should be located such that, in plan, they block line-of-sight between processing plant equipment and sensitive receptors, as described in the table below:

Table 1 Recommended Stockpile Height and Po	sition
---	--------

Stockpiles Positioned To Shield Receptor IDs	Minimum Stockpile Height (m)				
R1 and R15 to R18	10				
R3 to R7, R11 and R19	12				
This second s					

This configuration is shown in Figure 2.

- 2. A quiet drill with a maximum sound power rating of 112dBA should be used. This corresponds to a maximum sound pressure level rating of 75dBA at 30 meters.
- 3. Earth berms should be constructed to the elevations shown and located as shown on Figure 2.
- 4. The processing plant area should be established at an elevation of 351m, and a haul route trench connecting the processing plant area to the Stage 1 Phase 1 extraction area should be excavated to the same 351m elevation.
- 5. All construction equipment used in site preparation/construction must meet the sound emission standards defined in MOE publication NPC-115 and

Guelph/Eramosa Bylaw 5001/05. The relevant background information on nonstationary noise sources as well as publication NPC-115 is given in MOE Model Municipal Noise Control Bylaw, 1978 as well as the sound source exclusions defined in MOE publications NPC 205/232, 1995.

4 **Predicted Noise Levels**

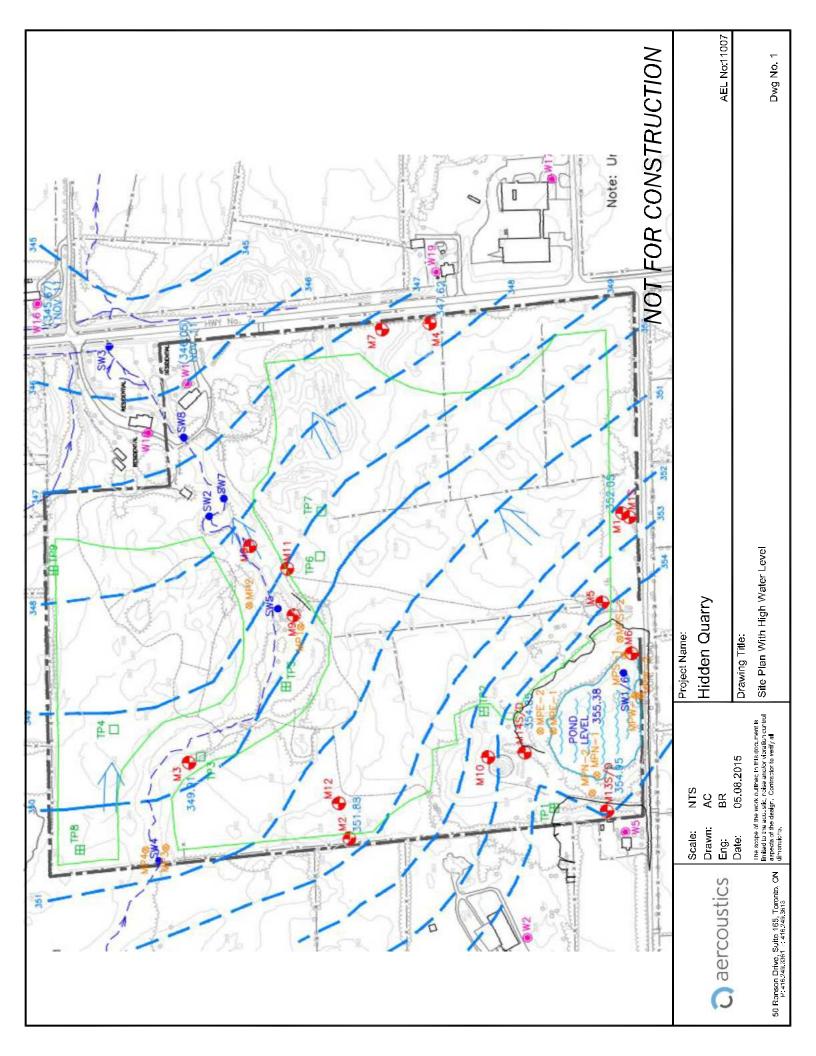
Table 2 presents the predictable worst case noise levels at the receptors.

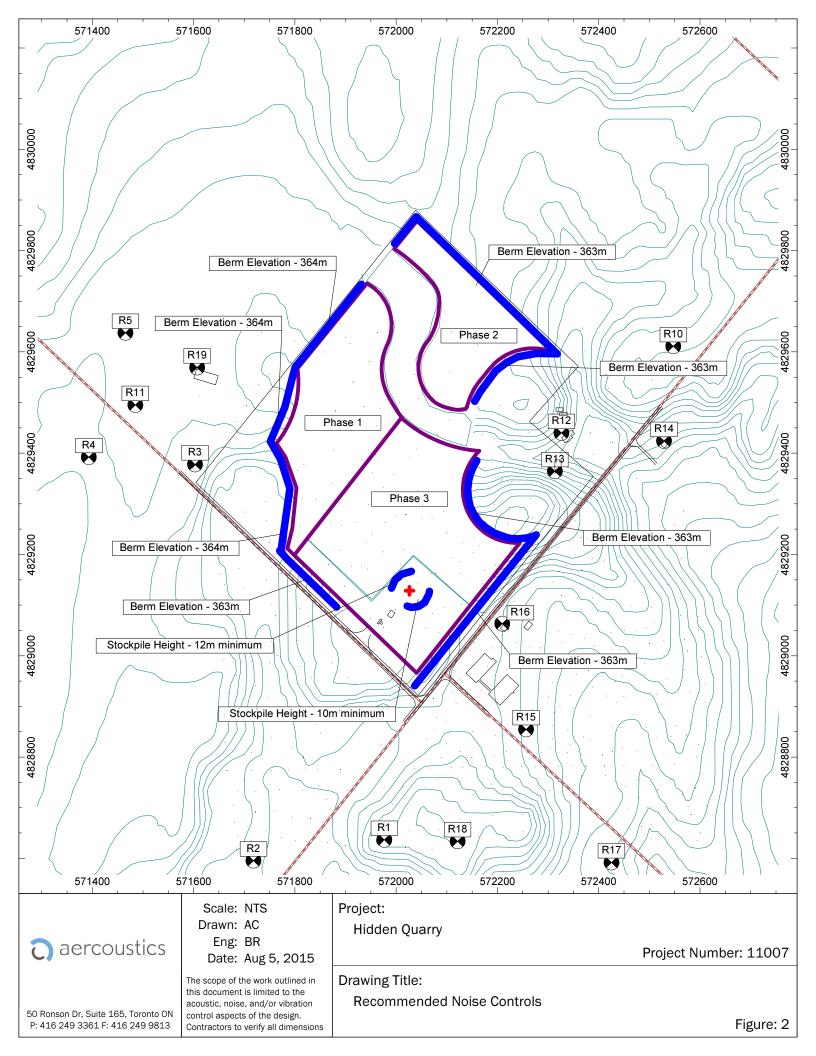
	Daytime (07	/:00 – 19:00)	Early Morning (23:00 – 07:00)						
		MOE or							
Receptor		Calculated Sound		Calculated Sound					
	Sound Levels	Level Limit	Sound Levels	Level Limit					
R01	50	50	36	45					
R02	49	51	33	45					
R03	45	45	27	40					
R04	41	45	25	40					
R05	41	45	22	40					
R06	39	45	21	40					
R07	39	45	22	40					
R08	41	45	22	40					
R09	42	45	23	40					
R10	48	53	32	45					
R11	42	45	24	40					
R12	49	50	33	45					
R13	48	50	31	45					
R14	48	53	32	45					
R15	45	50	32	45					
R16	49	57	35	45					
R17	41	45	28	40					
R18	43	45	32	40					
R19	45	45	27	40					

Table 2 Predicted Worst-Case Noise Levels in dBA

5 Closure

Please do not hesitate to contact the undersigned if you have any questions.


Yours Truly,


alles

Adam Collins, B.Eng., E.I.T. Aercoustics Engineering Limited

Bob Rimrott, M.A.Sc., P.Eng. Aercoustics Engineering Limited

Aercoustics Engineering Ltd. 50 Ronson Drive, Suite 165 Toronto, ON M9W 1B3 Tel: 416-249-3361 Fax 416-249-3613 aercoustics.com

PROFESSIONAL PROFILE

H. ROBERT RIMROTT, M.A.Sc., P.Eng.

EDUCATION

B.A.Sc., University of Toronto M.A.Sc., University of Toronto

PROFESSIONAL MEMBERSHIPS

Professional Engineer, Ontario (PEO) Consulting Engineer, Ontario (PEO) Acoustical Society of America (ASA) American Society of Mechanical Engineers (ASME)

PROFESSIONAL BACKGROUND

In 1987, Mr. Rimrott began his work as an acoustics and vibration consultant. In his many years in this field, he has completed many successful projects. In 1992, he joined Aercoustics Engineering Limited. He is a partner and principal engineer with the firm. Mr. Rimrott is recognized as an expert by the Ministry of Environment and Climate Change and has provided expert testimony in the forum of the Ontario Municipal Board Hearings.

In the field of environmental acoustics, Mr. Rimrott has completed numerous projects involving noise from planned stationary sources as well as noise studies for residential developments. These projects included conducting studies for both proposed operations and developments, studies addressing noise concerns for existing operations, and peer review of noise studies conducted by other acoustic consultants. Projects have included Industrial plants, Aggregate Pits and Quarries, and many other operations.

In the land use planning process Mr. Rimrott has completed studies provide assessments of the noise on the proposed residential development from the local environment which includes noise from road, rail, and aircraft traffic and stationary noise sources such as industries, and gun clubs. The studies include recommendations on noise control of the sources, dwelling building components, wall, window, and door constructions to satisfy the Ministry of Environment and Energy noise guidelines.

Partial Listing of Representative Projects

PITS AND QUARRIES

INDUSTRIAL

Dufferin Aggregates, many Pits Wimpey, Nolan Quarry Truax Pit Lafarge, Dundas quarry Cox Construction, Puslinch Pit Beamish Construction, Coboconk Quarry Coutrice Steel Co Steel Lasco Georga Pacific Flakeboard Boise Cascade Oriented Strand Board Plant Boise Cascade Co-Generation Station Moore Business Forms Metal Coating Alcan Foil Products INCO Alcan Rolled Products Townsend Lumber

BLAST / IMPULSE NOISES

Quarry Blasting Noise Meaford Artillery Range Walker Dog Kennel Pioneer Sportsmen Club

OUTDOOR MUSIC VENUES

Peterborough Amphitheatre City of Kitchener, Frosh Circus

Ontario Municipal Board Commission des affaires municipales de l'Ontario

ACKNOWLEDGMENT OF EXPERT'S DUTY

Case Number	Municipality

- 1. My name is <u>H. ROBERT</u> <u>RIMROTT</u> (name) I live at the <u>MISSISSAUGA</u> (municipality) in the <u>REGION</u> OF <u>PEEL</u> (county or region) in the <u>PROVINCE</u> OF ONTARIO (province)
- 2. I have been engaged by or on behalf of AMES DICK CONSTLUCION (name of party/parties) to provide evidence in relation to the above-noted Board proceeding.
- 3. I acknowledge that it is my duty to provide evidence in relation to this proceeding as follows:
 - a. to provide opinion evidence that is fair, objective and non-partisan;
 - b. to provide opinion evidence that is related only to matters that are within my area of expertise; and
 - c. to provide such additional assistance as the Board may reasonably require, to determine a matter in issue.
- 4. I acknowledge that the duty referred to above prevails over any obligation which I may owe to any party by whom or on whose behalf I am engaged.

Date APRIL 14,2016

Signature